Added new kmalloc test (km5) that tests various coremap properties. Also, km1-km4 were

cleaned up for test161.
This commit is contained in:
Scott Haseley 2016-03-25 11:12:09 -04:00
parent 501773f90e
commit 8380115efa
3 changed files with 228 additions and 5 deletions

View File

@ -113,6 +113,7 @@ int kmalloctest(int, char **);
int kmallocstress(int, char **);
int kmalloctest3(int, char **);
int kmalloctest4(int, char **);
int kmalloctest5(int, char **);
int nettest(int, char **);
/* Routine for running a user-level program. */

View File

@ -481,6 +481,7 @@ static const char *testmenu[] = {
"[km2] kmalloc stress test ",
"[km3] Large kmalloc test ",
"[km4] Multipage kmalloc test ",
"[km5] kmalloc coremap alloc test ",
"[tt1] Thread test 1 ",
"[tt2] Thread test 2 ",
"[tt3] Thread test 3 ",
@ -626,6 +627,7 @@ static struct {
{ "km2", kmallocstress },
{ "km3", kmalloctest3 },
{ "km4", kmalloctest4 },
{ "km5", kmalloctest5 },
#if OPT_NET
{ "net", nettest },
#endif

View File

@ -33,13 +33,19 @@
#include <types.h>
#include <kern/errno.h>
#include <lib.h>
#include <cpu.h>
#include <thread.h>
#include <synch.h>
#include <vm.h> /* for PAGE_SIZE */
#include <test.h>
#include <kern/test161.h>
#include <mainbus.h>
#include "opt-dumbvm.h"
// from arch/mips/vm/ram.c
extern vaddr_t firstfree;
////////////////////////////////////////////////////////////
// km1/km2
@ -58,6 +64,12 @@
#define ITEMSIZE 997
#define NTHREADS 8
#define PROGRESS(iter) do { \
if ((iter % 100) == 0) { \
kprintf("."); \
} \
} while (0)
static
void
kmallocthread(void *sm, unsigned long num)
@ -69,6 +81,7 @@ kmallocthread(void *sm, unsigned long num)
int i;
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
ptr = kmalloc(ITEMSIZE);
if (ptr==NULL) {
if (sem) {
@ -105,7 +118,8 @@ kmalloctest(int nargs, char **args)
kprintf("Starting kmalloc test...\n");
kmallocthread(NULL, 0);
kprintf("kmalloc test done\n");
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km1");
return 0;
}
@ -140,7 +154,8 @@ kmallocstress(int nargs, char **args)
}
sem_destroy(sem);
kprintf("kmalloc stress test done\n");
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km2");
return 0;
}
@ -252,6 +267,7 @@ kmalloctest3(int nargs, char **args)
curpos = 0;
cursizeindex = 0;
for (i=0; i<numptrs; i++) {
PROGRESS(i);
cursize = sizes[cursizeindex];
ptr = ptrblocks[curblock][curpos];
KASSERT(ptr != NULL);
@ -282,13 +298,15 @@ kmalloctest3(int nargs, char **args)
/* Free the lower tier. */
for (i=0; i<numptrblocks; i++) {
PROGRESS(i);
KASSERT(ptrblocks[i] != NULL);
kfree(ptrblocks[i]);
}
/* Free the upper tier. */
kfree(ptrblocks);
kprintf("kmalloctest3: passed\n");
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km3");
return 0;
}
@ -300,20 +318,24 @@ void
kmalloctest4thread(void *sm, unsigned long num)
{
#define NUM_KM4_SIZES 5
#define ITERATIONS 50
static const unsigned sizes[NUM_KM4_SIZES] = { 1, 3, 5, 2, 4 };
struct semaphore *sem = sm;
void *ptrs[NUM_KM4_SIZES];
unsigned p, q;
unsigned i;
unsigned i, j;
uint32_t magic;
for (i=0; i<NUM_KM4_SIZES; i++) {
ptrs[i] = NULL;
}
p = 0;
q = NUM_KM4_SIZES / 2;
magic = random();
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
if (ptrs[q] != NULL) {
kfree(ptrs[q]);
ptrs[q] = NULL;
@ -324,6 +346,17 @@ kmalloctest4thread(void *sm, unsigned long num)
"allocating %u pages failed\n",
num, sizes[p]);
}
// Write to the allocated memory and make sure nothing overwrites it.
*(uint32_t *)ptrs[p] = magic;
for (j = 0; j < ITERATIONS; j++) {
random_yielder(4);
if ((*(uint32_t *)ptrs[p]) != magic) {
panic("km4: expected %u got %u. Your VM is broken!",
magic, (*(uint32_t *)ptrs[p]));
}
}
magic++;
p = (p + 1) % NUM_KM4_SIZES;
q = (q + 1) % NUM_KM4_SIZES;
}
@ -375,6 +408,193 @@ kmalloctest4(int nargs, char **args)
}
sem_destroy(sem);
kprintf("Multipage kmalloc test done\n");
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km4");
return 0;
}
static inline
void
km5_usage()
{
kprintf("usage: km5 [--avail <num_pages>] [--kernel <num_pages>]\n");
}
/*
* Allocate and free all physical memory a number of times. Along the we, we
* check coremap_used_bytes to make sure it's reporting the number we're
* expecting.
*/
int
kmalloctest5(int nargs, char **args)
{
#define KM5_ITERATIONS 5
// We're expecting an even number of arguments, less arg[0].
if (nargs > 5 || (nargs % 2) == 0) {
km5_usage();
return 0;
}
unsigned avail_page_slack = 0, kernel_page_limit = 0;
int arg = 1;
while (arg < nargs) {
if (strcmp(args[arg], "--avail") == 0) {
arg++;
avail_page_slack = atoi(args[arg++]);
} else if (strcmp(args[arg], "--kernel") == 0) {
arg++;
kernel_page_limit = atoi(args[arg++]);
} else {
km5_usage();
return 0;
}
}
#if OPT_DUMBVM
kprintf("(This test will not work with dumbvm)\n");
#endif
// First, we need to figure out how much memory we're running with and how
// much space it will take up if we maintain a pointer to each allocated
// page. We do something similar to km3 - for 32 bit systems with
// PAGE_SIZE == 4096, we can store 1024 pointers on a page. We keep an array
// of page size blocks of pointers which in total can hold enough pointers
// for each page of available physical memory.
unsigned orig_used, ptrs_per_page, num_ptr_blocks, max_pages;
unsigned total_ram, avail_ram, magic, orig_magic, known_pages;
ptrs_per_page = PAGE_SIZE / sizeof(void *);
total_ram = mainbus_ramsize();
avail_ram = total_ram - (uint32_t)(firstfree - MIPS_KSEG0);
max_pages = (avail_ram + PAGE_SIZE-1) / PAGE_SIZE;
num_ptr_blocks = (max_pages + ptrs_per_page-1) / ptrs_per_page;
// The array can go on the stack, we won't have that many
// (sys161 16M max => 4 blocks)
void **ptrs[num_ptr_blocks];
for (unsigned i = 0; i < num_ptr_blocks; i++) {
ptrs[i] = kmalloc(PAGE_SIZE);
if (ptrs[i] == NULL) {
panic("Can't allocate ptr page!");
}
bzero(ptrs[i], PAGE_SIZE);
}
kprintf("km5 --> phys ram: %uk avail ram: %uk (%u pages) ptr blocks: %u\n", total_ram/1024,
avail_ram/1024, max_pages, num_ptr_blocks);
// Initially, there must be at least 1 page allocated for each thread stack,
// one page for kmalloc for this thread struct, plus what we just allocated).
// This probably isn't the GLB, but its a decent lower bound.
orig_used = coremap_used_bytes();
known_pages = num_cpus + num_ptr_blocks + 1;
if (orig_used < known_pages * PAGE_SIZE) {
panic ("Not enough pages initially allocated");
}
if ((orig_used % PAGE_SIZE) != 0) {
panic("Coremap used bytes should be a multiple of PAGE_SIZE");
}
// Test for kernel bloat.
if (kernel_page_limit > 0) {
uint32_t kpages = (total_ram - avail_ram + PAGE_SIZE) / PAGE_SIZE;
if (kpages > kernel_page_limit) {
panic("You're kernel is bloated! Max allowed pages: %d, used pages: %d",
kernel_page_limit, kpages);
}
}
orig_magic = magic = random();
for (int i = 0; i < KM5_ITERATIONS; i++) {
// Step 1: allocate all physical memory, with checks along the way
unsigned int block, pos, oom, pages, used, prev;
void *page;
block = pos = oom = pages = used = 0;
prev = orig_used;
while (pages < max_pages+1) {
PROGRESS(pages);
page = kmalloc(PAGE_SIZE);
if (page == NULL) {
oom = 1;
break;
}
// Make sure we can write to the page
*(uint32_t *)page = magic++;
// Make sure the number of used bytes is going up, and by increments of PAGE_SIZE
used = coremap_used_bytes();
if (used != prev + PAGE_SIZE) {
panic("Allocation not equal to PAGE_SIZE. prev: %u used: %u", prev, used);
}
prev = used;
ptrs[block][pos] = page;
pos++;
if (pos >= ptrs_per_page) {
pos = 0;
block++;
}
pages++;
}
// Step 2: Check that we were able to allocate a reasonable number of pages
unsigned expected;
if (avail_page_slack > 0 ) {
// max avail pages + what we can prove we allocated + some slack
expected = max_pages - (known_pages + avail_page_slack);
} else {
// At the very least, just so we know things are working.
expected = 3;
}
if (pages < expected) {
panic("Expected to allocate at least %d pages, only allocated %d",
expected, pages);
}
// We tried to allocate 1 more page than is available in physical memory. That
// should fail unless you're swapping out kernel pages, which you should
// probably not be doing.
if (!oom) {
panic("Allocated more pages than physical memory. Are you swapping kernel pages?");
}
// Step 3: free everything and check that we're back to where we started
for (block = 0; block < num_ptr_blocks; block++) {
for (pos = 0; pos < ptrs_per_page; pos++) {
if (ptrs[block][pos] != NULL) {
// Make sure we got unique addresses
if ((*(uint32_t *)ptrs[block][pos]) != orig_magic++) {
panic("km5: expected %u got %u - your VM is broken!",
orig_magic-1, (*(uint32_t *)ptrs[block][pos]));
}
kfree(ptrs[block][pos]);
}
}
}
// Check that we're back to where we started
used = coremap_used_bytes();
if (used != orig_used) {
panic("orig (%u) != used (%u)", orig_used, used);
}
}
//Clean up the pointer blocks
for (unsigned i = 0; i < num_ptr_blocks; i++) {
kfree(ptrs[i]);
}
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km5");
return 0;
}