os161/kern/test/kmalloctest.c
2016-03-25 11:12:09 -04:00

601 lines
15 KiB
C

/*
* Copyright (c) 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009
* The President and Fellows of Harvard College.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Test code for kmalloc.
*/
#include <types.h>
#include <kern/errno.h>
#include <lib.h>
#include <cpu.h>
#include <thread.h>
#include <synch.h>
#include <vm.h> /* for PAGE_SIZE */
#include <test.h>
#include <kern/test161.h>
#include <mainbus.h>
#include "opt-dumbvm.h"
// from arch/mips/vm/ram.c
extern vaddr_t firstfree;
////////////////////////////////////////////////////////////
// km1/km2
/*
* Test kmalloc; allocate ITEMSIZE bytes NTRIES times, freeing
* somewhat later.
*
* The total of ITEMSIZE * NTRIES is intended to exceed the size of
* available memory.
*
* kmallocstress does the same thing, but from NTHREADS different
* threads at once.
*/
#define NTRIES 1200
#define ITEMSIZE 997
#define NTHREADS 8
#define PROGRESS(iter) do { \
if ((iter % 100) == 0) { \
kprintf("."); \
} \
} while (0)
static
void
kmallocthread(void *sm, unsigned long num)
{
struct semaphore *sem = sm;
void *ptr;
void *oldptr=NULL;
void *oldptr2=NULL;
int i;
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
ptr = kmalloc(ITEMSIZE);
if (ptr==NULL) {
if (sem) {
kprintf("thread %lu: kmalloc returned NULL\n",
num);
goto done;
}
kprintf("kmalloc returned null; test failed.\n");
goto done;
}
if (oldptr2) {
kfree(oldptr2);
}
oldptr2 = oldptr;
oldptr = ptr;
}
done:
if (oldptr2) {
kfree(oldptr2);
}
if (oldptr) {
kfree(oldptr);
}
if (sem) {
V(sem);
}
}
int
kmalloctest(int nargs, char **args)
{
(void)nargs;
(void)args;
kprintf("Starting kmalloc test...\n");
kmallocthread(NULL, 0);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km1");
return 0;
}
int
kmallocstress(int nargs, char **args)
{
struct semaphore *sem;
int i, result;
(void)nargs;
(void)args;
sem = sem_create("kmallocstress", 0);
if (sem == NULL) {
panic("kmallocstress: sem_create failed\n");
}
kprintf("Starting kmalloc stress test...\n");
for (i=0; i<NTHREADS; i++) {
result = thread_fork("kmallocstress", NULL,
kmallocthread, sem, i);
if (result) {
panic("kmallocstress: thread_fork failed: %s\n",
strerror(result));
}
}
for (i=0; i<NTHREADS; i++) {
P(sem);
}
sem_destroy(sem);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km2");
return 0;
}
////////////////////////////////////////////////////////////
// km3
/*
* Larger kmalloc test. Or at least, potentially larger. The size is
* an argument.
*
* The argument specifies the number of objects to allocate; the size
* of each allocation rotates through sizes[]. (FUTURE: should there
* be a mode that allocates random sizes?) In order to hold the
* pointers returned by kmalloc we first allocate a two-level radix
* tree whose lower tier is made up of blocks of size PAGE_SIZE/4.
* (This is so they all go to the subpage allocator rather than being
* whole-page allocations.)
*
* Since PAGE_SIZE is commonly 4096, each of these blocks holds 1024
* pointers (on a 32-bit machine) or 512 (on a 64-bit machine) and so
* we can store considerably more pointers than we have memory for
* before the upper tier becomes a whole page or otherwise gets
* uncomfortably large.
*
* Having set this up, the test just allocates and then frees all the
* pointers in order, setting and checking the contents.
*/
int
kmalloctest3(int nargs, char **args)
{
#define NUM_KM3_SIZES 5
static const unsigned sizes[NUM_KM3_SIZES] = { 32, 41, 109, 86, 9 };
unsigned numptrs;
size_t ptrspace;
size_t blocksize;
unsigned numptrblocks;
void ***ptrblocks;
unsigned curblock, curpos, cursizeindex, cursize;
size_t totalsize;
unsigned i, j;
unsigned char *ptr;
if (nargs != 2) {
kprintf("kmalloctest3: usage: km3 numobjects\n");
return EINVAL;
}
/* Figure out how many pointers we'll get and the space they need. */
numptrs = atoi(args[1]);
ptrspace = numptrs * sizeof(void *);
/* Figure out how many blocks in the lower tier. */
blocksize = PAGE_SIZE / 4;
numptrblocks = DIVROUNDUP(ptrspace, blocksize);
kprintf("kmalloctest3: %u objects, %u pointer blocks\n",
numptrs, numptrblocks);
/* Allocate the upper tier. */
ptrblocks = kmalloc(numptrblocks * sizeof(ptrblocks[0]));
if (ptrblocks == NULL) {
panic("kmalloctest3: failed on pointer block array\n");
}
/* Allocate the lower tier. */
for (i=0; i<numptrblocks; i++) {
ptrblocks[i] = kmalloc(blocksize);
if (ptrblocks[i] == NULL) {
panic("kmalloctest3: failed on pointer block %u\n", i);
}
}
/* Allocate the objects. */
curblock = 0;
curpos = 0;
cursizeindex = 0;
totalsize = 0;
for (i=0; i<numptrs; i++) {
cursize = sizes[cursizeindex];
ptr = kmalloc(cursize);
if (ptr == NULL) {
kprintf("kmalloctest3: failed on object %u size %u\n",
i, cursize);
kprintf("kmalloctest3: pos %u in pointer block %u\n",
curpos, curblock);
kprintf("kmalloctest3: total so far %zu\n", totalsize);
panic("kmalloctest3: failed.\n");
}
/* Fill the object with its number. */
for (j=0; j<cursize; j++) {
ptr[j] = (unsigned char) i;
}
/* Move to the next slot in the tree. */
ptrblocks[curblock][curpos] = ptr;
curpos++;
if (curpos >= blocksize / sizeof(void *)) {
curblock++;
curpos = 0;
}
/* Update the running total, and rotate the size. */
totalsize += cursize;
cursizeindex = (cursizeindex + 1) % NUM_KM3_SIZES;
}
kprintf("kmalloctest3: %zu bytes allocated\n", totalsize);
/* Free the objects. */
curblock = 0;
curpos = 0;
cursizeindex = 0;
for (i=0; i<numptrs; i++) {
PROGRESS(i);
cursize = sizes[cursizeindex];
ptr = ptrblocks[curblock][curpos];
KASSERT(ptr != NULL);
for (j=0; j<cursize; j++) {
if (ptr[j] == (unsigned char) i) {
continue;
}
kprintf("kmalloctest3: failed on object %u size %u\n",
i, cursize);
kprintf("kmalloctest3: pos %u in pointer block %u\n",
curpos, curblock);
kprintf("kmalloctest3: at object offset %u\n", j);
kprintf("kmalloctest3: expected 0x%x, found 0x%x\n",
ptr[j], (unsigned char) i);
panic("kmalloctest3: failed.\n");
}
kfree(ptr);
curpos++;
if (curpos >= blocksize / sizeof(void *)) {
curblock++;
curpos = 0;
}
KASSERT(totalsize > 0);
totalsize -= cursize;
cursizeindex = (cursizeindex + 1) % NUM_KM3_SIZES;
}
KASSERT(totalsize == 0);
/* Free the lower tier. */
for (i=0; i<numptrblocks; i++) {
PROGRESS(i);
KASSERT(ptrblocks[i] != NULL);
kfree(ptrblocks[i]);
}
/* Free the upper tier. */
kfree(ptrblocks);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km3");
return 0;
}
////////////////////////////////////////////////////////////
// km4
static
void
kmalloctest4thread(void *sm, unsigned long num)
{
#define NUM_KM4_SIZES 5
#define ITERATIONS 50
static const unsigned sizes[NUM_KM4_SIZES] = { 1, 3, 5, 2, 4 };
struct semaphore *sem = sm;
void *ptrs[NUM_KM4_SIZES];
unsigned p, q;
unsigned i, j;
uint32_t magic;
for (i=0; i<NUM_KM4_SIZES; i++) {
ptrs[i] = NULL;
}
p = 0;
q = NUM_KM4_SIZES / 2;
magic = random();
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
if (ptrs[q] != NULL) {
kfree(ptrs[q]);
ptrs[q] = NULL;
}
ptrs[p] = kmalloc(sizes[p] * PAGE_SIZE);
if (ptrs[p] == NULL) {
panic("kmalloctest4: thread %lu: "
"allocating %u pages failed\n",
num, sizes[p]);
}
// Write to the allocated memory and make sure nothing overwrites it.
*(uint32_t *)ptrs[p] = magic;
for (j = 0; j < ITERATIONS; j++) {
random_yielder(4);
if ((*(uint32_t *)ptrs[p]) != magic) {
panic("km4: expected %u got %u. Your VM is broken!",
magic, (*(uint32_t *)ptrs[p]));
}
}
magic++;
p = (p + 1) % NUM_KM4_SIZES;
q = (q + 1) % NUM_KM4_SIZES;
}
for (i=0; i<NUM_KM4_SIZES; i++) {
if (ptrs[i] != NULL) {
kfree(ptrs[i]);
}
}
V(sem);
}
int
kmalloctest4(int nargs, char **args)
{
struct semaphore *sem;
unsigned nthreads;
unsigned i;
int result;
(void)nargs;
(void)args;
kprintf("Starting multipage kmalloc test...\n");
#if OPT_DUMBVM
kprintf("(This test will not work with dumbvm)\n");
#endif
sem = sem_create("kmalloctest4", 0);
if (sem == NULL) {
panic("kmalloctest4: sem_create failed\n");
}
/* use 6 instead of 8 threads */
nthreads = (3*NTHREADS)/4;
for (i=0; i<nthreads; i++) {
result = thread_fork("kmalloctest4", NULL,
kmalloctest4thread, sem, i);
if (result) {
panic("kmallocstress: thread_fork failed: %s\n",
strerror(result));
}
}
for (i=0; i<nthreads; i++) {
P(sem);
}
sem_destroy(sem);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km4");
return 0;
}
static inline
void
km5_usage()
{
kprintf("usage: km5 [--avail <num_pages>] [--kernel <num_pages>]\n");
}
/*
* Allocate and free all physical memory a number of times. Along the we, we
* check coremap_used_bytes to make sure it's reporting the number we're
* expecting.
*/
int
kmalloctest5(int nargs, char **args)
{
#define KM5_ITERATIONS 5
// We're expecting an even number of arguments, less arg[0].
if (nargs > 5 || (nargs % 2) == 0) {
km5_usage();
return 0;
}
unsigned avail_page_slack = 0, kernel_page_limit = 0;
int arg = 1;
while (arg < nargs) {
if (strcmp(args[arg], "--avail") == 0) {
arg++;
avail_page_slack = atoi(args[arg++]);
} else if (strcmp(args[arg], "--kernel") == 0) {
arg++;
kernel_page_limit = atoi(args[arg++]);
} else {
km5_usage();
return 0;
}
}
#if OPT_DUMBVM
kprintf("(This test will not work with dumbvm)\n");
#endif
// First, we need to figure out how much memory we're running with and how
// much space it will take up if we maintain a pointer to each allocated
// page. We do something similar to km3 - for 32 bit systems with
// PAGE_SIZE == 4096, we can store 1024 pointers on a page. We keep an array
// of page size blocks of pointers which in total can hold enough pointers
// for each page of available physical memory.
unsigned orig_used, ptrs_per_page, num_ptr_blocks, max_pages;
unsigned total_ram, avail_ram, magic, orig_magic, known_pages;
ptrs_per_page = PAGE_SIZE / sizeof(void *);
total_ram = mainbus_ramsize();
avail_ram = total_ram - (uint32_t)(firstfree - MIPS_KSEG0);
max_pages = (avail_ram + PAGE_SIZE-1) / PAGE_SIZE;
num_ptr_blocks = (max_pages + ptrs_per_page-1) / ptrs_per_page;
// The array can go on the stack, we won't have that many
// (sys161 16M max => 4 blocks)
void **ptrs[num_ptr_blocks];
for (unsigned i = 0; i < num_ptr_blocks; i++) {
ptrs[i] = kmalloc(PAGE_SIZE);
if (ptrs[i] == NULL) {
panic("Can't allocate ptr page!");
}
bzero(ptrs[i], PAGE_SIZE);
}
kprintf("km5 --> phys ram: %uk avail ram: %uk (%u pages) ptr blocks: %u\n", total_ram/1024,
avail_ram/1024, max_pages, num_ptr_blocks);
// Initially, there must be at least 1 page allocated for each thread stack,
// one page for kmalloc for this thread struct, plus what we just allocated).
// This probably isn't the GLB, but its a decent lower bound.
orig_used = coremap_used_bytes();
known_pages = num_cpus + num_ptr_blocks + 1;
if (orig_used < known_pages * PAGE_SIZE) {
panic ("Not enough pages initially allocated");
}
if ((orig_used % PAGE_SIZE) != 0) {
panic("Coremap used bytes should be a multiple of PAGE_SIZE");
}
// Test for kernel bloat.
if (kernel_page_limit > 0) {
uint32_t kpages = (total_ram - avail_ram + PAGE_SIZE) / PAGE_SIZE;
if (kpages > kernel_page_limit) {
panic("You're kernel is bloated! Max allowed pages: %d, used pages: %d",
kernel_page_limit, kpages);
}
}
orig_magic = magic = random();
for (int i = 0; i < KM5_ITERATIONS; i++) {
// Step 1: allocate all physical memory, with checks along the way
unsigned int block, pos, oom, pages, used, prev;
void *page;
block = pos = oom = pages = used = 0;
prev = orig_used;
while (pages < max_pages+1) {
PROGRESS(pages);
page = kmalloc(PAGE_SIZE);
if (page == NULL) {
oom = 1;
break;
}
// Make sure we can write to the page
*(uint32_t *)page = magic++;
// Make sure the number of used bytes is going up, and by increments of PAGE_SIZE
used = coremap_used_bytes();
if (used != prev + PAGE_SIZE) {
panic("Allocation not equal to PAGE_SIZE. prev: %u used: %u", prev, used);
}
prev = used;
ptrs[block][pos] = page;
pos++;
if (pos >= ptrs_per_page) {
pos = 0;
block++;
}
pages++;
}
// Step 2: Check that we were able to allocate a reasonable number of pages
unsigned expected;
if (avail_page_slack > 0 ) {
// max avail pages + what we can prove we allocated + some slack
expected = max_pages - (known_pages + avail_page_slack);
} else {
// At the very least, just so we know things are working.
expected = 3;
}
if (pages < expected) {
panic("Expected to allocate at least %d pages, only allocated %d",
expected, pages);
}
// We tried to allocate 1 more page than is available in physical memory. That
// should fail unless you're swapping out kernel pages, which you should
// probably not be doing.
if (!oom) {
panic("Allocated more pages than physical memory. Are you swapping kernel pages?");
}
// Step 3: free everything and check that we're back to where we started
for (block = 0; block < num_ptr_blocks; block++) {
for (pos = 0; pos < ptrs_per_page; pos++) {
if (ptrs[block][pos] != NULL) {
// Make sure we got unique addresses
if ((*(uint32_t *)ptrs[block][pos]) != orig_magic++) {
panic("km5: expected %u got %u - your VM is broken!",
orig_magic-1, (*(uint32_t *)ptrs[block][pos]));
}
kfree(ptrs[block][pos]);
}
}
}
// Check that we're back to where we started
used = coremap_used_bytes();
if (used != orig_used) {
panic("orig (%u) != used (%u)", orig_used, used);
}
}
//Clean up the pointer blocks
for (unsigned i = 0; i < num_ptr_blocks; i++) {
kfree(ptrs[i]);
}
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km5");
return 0;
}