608 lines
15 KiB
C
608 lines
15 KiB
C
/*
|
|
* Copyright (c) 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009
|
|
* The President and Fellows of Harvard College.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Test code for kmalloc.
|
|
*/
|
|
#include <types.h>
|
|
#include <kern/errno.h>
|
|
#include <lib.h>
|
|
#include <cpu.h>
|
|
#include <thread.h>
|
|
#include <synch.h>
|
|
#include <vm.h> /* for PAGE_SIZE */
|
|
#include <test.h>
|
|
#include <kern/test161.h>
|
|
#include <mainbus.h>
|
|
|
|
#include "opt-dumbvm.h"
|
|
|
|
// from arch/mips/vm/ram.c
|
|
extern vaddr_t firstfree;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// km1/km2
|
|
|
|
/*
|
|
* Test kmalloc; allocate ITEMSIZE bytes NTRIES times, freeing
|
|
* somewhat later.
|
|
*
|
|
* The total of ITEMSIZE * NTRIES is intended to exceed the size of
|
|
* available memory.
|
|
*
|
|
* kmallocstress does the same thing, but from NTHREADS different
|
|
* threads at once.
|
|
*/
|
|
|
|
#define NTRIES 1200
|
|
#define ITEMSIZE 997
|
|
#define NTHREADS 8
|
|
|
|
#define PROGRESS(iter) do { \
|
|
if ((iter % 100) == 0) { \
|
|
kprintf("."); \
|
|
} \
|
|
} while (0)
|
|
|
|
static
|
|
void
|
|
kmallocthread(void *sm, unsigned long num)
|
|
{
|
|
struct semaphore *sem = sm;
|
|
void *ptr;
|
|
void *oldptr=NULL;
|
|
void *oldptr2=NULL;
|
|
int i;
|
|
|
|
for (i=0; i<NTRIES; i++) {
|
|
PROGRESS(i);
|
|
ptr = kmalloc(ITEMSIZE);
|
|
if (ptr==NULL) {
|
|
if (sem) {
|
|
kprintf("thread %lu: kmalloc returned NULL\n",
|
|
num);
|
|
panic("kmalloc test failed");
|
|
}
|
|
kprintf("kmalloc returned null; test failed.\n");
|
|
panic("kmalloc test failed");
|
|
}
|
|
if (oldptr2) {
|
|
kfree(oldptr2);
|
|
}
|
|
oldptr2 = oldptr;
|
|
oldptr = ptr;
|
|
}
|
|
|
|
if (oldptr2) {
|
|
kfree(oldptr2);
|
|
}
|
|
if (oldptr) {
|
|
kfree(oldptr);
|
|
}
|
|
if (sem) {
|
|
V(sem);
|
|
}
|
|
}
|
|
|
|
int
|
|
kmalloctest(int nargs, char **args)
|
|
{
|
|
(void)nargs;
|
|
(void)args;
|
|
|
|
kprintf("Starting kmalloc test...\n");
|
|
kmallocthread(NULL, 0);
|
|
kprintf("\n");
|
|
success(TEST161_SUCCESS, SECRET, "km1");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
kmallocstress(int nargs, char **args)
|
|
{
|
|
struct semaphore *sem;
|
|
int i, result;
|
|
|
|
(void)nargs;
|
|
(void)args;
|
|
|
|
sem = sem_create("kmallocstress", 0);
|
|
if (sem == NULL) {
|
|
panic("kmallocstress: sem_create failed\n");
|
|
}
|
|
|
|
kprintf("Starting kmalloc stress test...\n");
|
|
|
|
for (i=0; i<NTHREADS; i++) {
|
|
result = thread_fork("kmallocstress", NULL,
|
|
kmallocthread, sem, i);
|
|
if (result) {
|
|
panic("kmallocstress: thread_fork failed: %s\n",
|
|
strerror(result));
|
|
}
|
|
}
|
|
|
|
for (i=0; i<NTHREADS; i++) {
|
|
P(sem);
|
|
}
|
|
|
|
sem_destroy(sem);
|
|
kprintf("\n");
|
|
success(TEST161_SUCCESS, SECRET, "km2");
|
|
|
|
return 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// km3
|
|
|
|
/*
|
|
* Larger kmalloc test. Or at least, potentially larger. The size is
|
|
* an argument.
|
|
*
|
|
* The argument specifies the number of objects to allocate; the size
|
|
* of each allocation rotates through sizes[]. (FUTURE: should there
|
|
* be a mode that allocates random sizes?) In order to hold the
|
|
* pointers returned by kmalloc we first allocate a two-level radix
|
|
* tree whose lower tier is made up of blocks of size PAGE_SIZE/4.
|
|
* (This is so they all go to the subpage allocator rather than being
|
|
* whole-page allocations.)
|
|
*
|
|
* Since PAGE_SIZE is commonly 4096, each of these blocks holds 1024
|
|
* pointers (on a 32-bit machine) or 512 (on a 64-bit machine) and so
|
|
* we can store considerably more pointers than we have memory for
|
|
* before the upper tier becomes a whole page or otherwise gets
|
|
* uncomfortably large.
|
|
*
|
|
* Having set this up, the test just allocates and then frees all the
|
|
* pointers in order, setting and checking the contents.
|
|
*/
|
|
int
|
|
kmalloctest3(int nargs, char **args)
|
|
{
|
|
#define NUM_KM3_SIZES 5
|
|
static const unsigned sizes[NUM_KM3_SIZES] = { 32, 41, 109, 86, 9 };
|
|
unsigned numptrs;
|
|
size_t ptrspace;
|
|
size_t blocksize;
|
|
unsigned numptrblocks;
|
|
void ***ptrblocks;
|
|
unsigned curblock, curpos, cursizeindex, cursize;
|
|
size_t totalsize;
|
|
unsigned i, j;
|
|
unsigned char *ptr;
|
|
|
|
if (nargs != 2) {
|
|
kprintf("kmalloctest3: usage: km3 numobjects\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Figure out how many pointers we'll get and the space they need. */
|
|
numptrs = atoi(args[1]);
|
|
ptrspace = numptrs * sizeof(void *);
|
|
|
|
/* Figure out how many blocks in the lower tier. */
|
|
blocksize = PAGE_SIZE / 4;
|
|
numptrblocks = DIVROUNDUP(ptrspace, blocksize);
|
|
|
|
kprintf("kmalloctest3: %u objects, %u pointer blocks\n",
|
|
numptrs, numptrblocks);
|
|
|
|
/* Allocate the upper tier. */
|
|
ptrblocks = kmalloc(numptrblocks * sizeof(ptrblocks[0]));
|
|
if (ptrblocks == NULL) {
|
|
panic("kmalloctest3: failed on pointer block array\n");
|
|
}
|
|
/* Allocate the lower tier. */
|
|
for (i=0; i<numptrblocks; i++) {
|
|
ptrblocks[i] = kmalloc(blocksize);
|
|
if (ptrblocks[i] == NULL) {
|
|
panic("kmalloctest3: failed on pointer block %u\n", i);
|
|
}
|
|
}
|
|
|
|
/* Allocate the objects. */
|
|
curblock = 0;
|
|
curpos = 0;
|
|
cursizeindex = 0;
|
|
totalsize = 0;
|
|
for (i=0; i<numptrs; i++) {
|
|
cursize = sizes[cursizeindex];
|
|
ptr = kmalloc(cursize);
|
|
if (ptr == NULL) {
|
|
kprintf("kmalloctest3: failed on object %u size %u\n",
|
|
i, cursize);
|
|
kprintf("kmalloctest3: pos %u in pointer block %u\n",
|
|
curpos, curblock);
|
|
kprintf("kmalloctest3: total so far %zu\n", totalsize);
|
|
panic("kmalloctest3: failed.\n");
|
|
}
|
|
/* Fill the object with its number. */
|
|
for (j=0; j<cursize; j++) {
|
|
ptr[j] = (unsigned char) i;
|
|
}
|
|
/* Move to the next slot in the tree. */
|
|
ptrblocks[curblock][curpos] = ptr;
|
|
curpos++;
|
|
if (curpos >= blocksize / sizeof(void *)) {
|
|
curblock++;
|
|
curpos = 0;
|
|
}
|
|
/* Update the running total, and rotate the size. */
|
|
totalsize += cursize;
|
|
cursizeindex = (cursizeindex + 1) % NUM_KM3_SIZES;
|
|
}
|
|
|
|
kprintf("kmalloctest3: %zu bytes allocated\n", totalsize);
|
|
|
|
/* Free the objects. */
|
|
curblock = 0;
|
|
curpos = 0;
|
|
cursizeindex = 0;
|
|
for (i=0; i<numptrs; i++) {
|
|
PROGRESS(i);
|
|
cursize = sizes[cursizeindex];
|
|
ptr = ptrblocks[curblock][curpos];
|
|
KASSERT(ptr != NULL);
|
|
for (j=0; j<cursize; j++) {
|
|
if (ptr[j] == (unsigned char) i) {
|
|
continue;
|
|
}
|
|
kprintf("kmalloctest3: failed on object %u size %u\n",
|
|
i, cursize);
|
|
kprintf("kmalloctest3: pos %u in pointer block %u\n",
|
|
curpos, curblock);
|
|
kprintf("kmalloctest3: at object offset %u\n", j);
|
|
kprintf("kmalloctest3: expected 0x%x, found 0x%x\n",
|
|
ptr[j], (unsigned char) i);
|
|
panic("kmalloctest3: failed.\n");
|
|
}
|
|
kfree(ptr);
|
|
curpos++;
|
|
if (curpos >= blocksize / sizeof(void *)) {
|
|
curblock++;
|
|
curpos = 0;
|
|
}
|
|
KASSERT(totalsize > 0);
|
|
totalsize -= cursize;
|
|
cursizeindex = (cursizeindex + 1) % NUM_KM3_SIZES;
|
|
}
|
|
KASSERT(totalsize == 0);
|
|
|
|
/* Free the lower tier. */
|
|
for (i=0; i<numptrblocks; i++) {
|
|
PROGRESS(i);
|
|
KASSERT(ptrblocks[i] != NULL);
|
|
kfree(ptrblocks[i]);
|
|
}
|
|
/* Free the upper tier. */
|
|
kfree(ptrblocks);
|
|
|
|
kprintf("\n");
|
|
success(TEST161_SUCCESS, SECRET, "km3");
|
|
return 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// km4
|
|
|
|
static
|
|
void
|
|
kmalloctest4thread(void *sm, unsigned long num)
|
|
{
|
|
#define NUM_KM4_SIZES 5
|
|
#define ITERATIONS 50
|
|
static const unsigned sizes[NUM_KM4_SIZES] = { 1, 3, 5, 2, 4 };
|
|
|
|
struct semaphore *sem = sm;
|
|
void *ptrs[NUM_KM4_SIZES];
|
|
unsigned p, q;
|
|
unsigned i, j, k;
|
|
uint32_t magic;
|
|
|
|
for (i=0; i<NUM_KM4_SIZES; i++) {
|
|
ptrs[i] = NULL;
|
|
}
|
|
p = 0;
|
|
q = NUM_KM4_SIZES / 2;
|
|
magic = random();
|
|
|
|
for (i=0; i<NTRIES; i++) {
|
|
PROGRESS(i);
|
|
if (ptrs[q] != NULL) {
|
|
kfree(ptrs[q]);
|
|
ptrs[q] = NULL;
|
|
}
|
|
ptrs[p] = kmalloc(sizes[p] * PAGE_SIZE);
|
|
if (ptrs[p] == NULL) {
|
|
panic("kmalloctest4: thread %lu: "
|
|
"allocating %u pages failed\n",
|
|
num, sizes[p]);
|
|
}
|
|
|
|
// Write to each page of the allocated memory and make sure nothing
|
|
// overwrites it.
|
|
for (k = 0; k < sizes[p]; k++) {
|
|
*((uint32_t *)ptrs[p] + k*PAGE_SIZE/sizeof(uint32_t)) = magic;
|
|
}
|
|
|
|
for (j = 0; j < ITERATIONS; j++) {
|
|
random_yielder(4);
|
|
for (k = 0; k < sizes[p]; k++) {
|
|
uint32_t actual = *((uint32_t *)ptrs[p] + k*PAGE_SIZE/sizeof(uint32_t));
|
|
if (actual != magic) {
|
|
panic("km4: expected %u got %u. Your VM is broken!",
|
|
magic, actual);
|
|
}
|
|
}
|
|
}
|
|
magic++;
|
|
p = (p + 1) % NUM_KM4_SIZES;
|
|
q = (q + 1) % NUM_KM4_SIZES;
|
|
}
|
|
|
|
for (i=0; i<NUM_KM4_SIZES; i++) {
|
|
if (ptrs[i] != NULL) {
|
|
kfree(ptrs[i]);
|
|
}
|
|
}
|
|
|
|
V(sem);
|
|
}
|
|
|
|
int
|
|
kmalloctest4(int nargs, char **args)
|
|
{
|
|
struct semaphore *sem;
|
|
unsigned nthreads;
|
|
unsigned i;
|
|
int result;
|
|
|
|
(void)nargs;
|
|
(void)args;
|
|
|
|
kprintf("Starting multipage kmalloc test...\n");
|
|
#if OPT_DUMBVM
|
|
kprintf("(This test will not work with dumbvm)\n");
|
|
#endif
|
|
|
|
sem = sem_create("kmalloctest4", 0);
|
|
if (sem == NULL) {
|
|
panic("kmalloctest4: sem_create failed\n");
|
|
}
|
|
|
|
/* use 6 instead of 8 threads */
|
|
nthreads = (3*NTHREADS)/4;
|
|
|
|
for (i=0; i<nthreads; i++) {
|
|
result = thread_fork("kmalloctest4", NULL,
|
|
kmalloctest4thread, sem, i);
|
|
if (result) {
|
|
panic("kmallocstress: thread_fork failed: %s\n",
|
|
strerror(result));
|
|
}
|
|
}
|
|
|
|
for (i=0; i<nthreads; i++) {
|
|
P(sem);
|
|
}
|
|
|
|
sem_destroy(sem);
|
|
|
|
kprintf("\n");
|
|
success(TEST161_SUCCESS, SECRET, "km4");
|
|
return 0;
|
|
}
|
|
|
|
static inline
|
|
void
|
|
km5_usage()
|
|
{
|
|
kprintf("usage: km5 [--avail <num_pages>] [--kernel <num_pages>]\n");
|
|
}
|
|
|
|
/*
|
|
* Allocate and free all physical memory a number of times. Along the we, we
|
|
* check coremap_used_bytes to make sure it's reporting the number we're
|
|
* expecting.
|
|
*/
|
|
int
|
|
kmalloctest5(int nargs, char **args)
|
|
{
|
|
#define KM5_ITERATIONS 5
|
|
|
|
// We're expecting an even number of arguments, less arg[0].
|
|
if (nargs > 5 || (nargs % 2) == 0) {
|
|
km5_usage();
|
|
return 0;
|
|
}
|
|
|
|
unsigned avail_page_slack = 0, kernel_page_limit = 0;
|
|
int arg = 1;
|
|
|
|
while (arg < nargs) {
|
|
if (strcmp(args[arg], "--avail") == 0) {
|
|
arg++;
|
|
avail_page_slack = atoi(args[arg++]);
|
|
} else if (strcmp(args[arg], "--kernel") == 0) {
|
|
arg++;
|
|
kernel_page_limit = atoi(args[arg++]);
|
|
} else {
|
|
km5_usage();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if OPT_DUMBVM
|
|
kprintf("(This test will not work with dumbvm)\n");
|
|
#endif
|
|
|
|
// First, we need to figure out how much memory we're running with and how
|
|
// much space it will take up if we maintain a pointer to each allocated
|
|
// page. We do something similar to km3 - for 32 bit systems with
|
|
// PAGE_SIZE == 4096, we can store 1024 pointers on a page. We keep an array
|
|
// of page size blocks of pointers which in total can hold enough pointers
|
|
// for each page of available physical memory.
|
|
unsigned orig_used, ptrs_per_page, num_ptr_blocks, max_pages;
|
|
unsigned total_ram, avail_ram, magic, orig_magic, known_pages;
|
|
|
|
ptrs_per_page = PAGE_SIZE / sizeof(void *);
|
|
total_ram = mainbus_ramsize();
|
|
avail_ram = total_ram - (uint32_t)(firstfree - MIPS_KSEG0);
|
|
max_pages = (avail_ram + PAGE_SIZE-1) / PAGE_SIZE;
|
|
num_ptr_blocks = (max_pages + ptrs_per_page-1) / ptrs_per_page;
|
|
|
|
// The array can go on the stack, we won't have that many
|
|
// (sys161 16M max => 4 blocks)
|
|
void **ptrs[num_ptr_blocks];
|
|
|
|
for (unsigned i = 0; i < num_ptr_blocks; i++) {
|
|
ptrs[i] = kmalloc(PAGE_SIZE);
|
|
if (ptrs[i] == NULL) {
|
|
panic("Can't allocate ptr page!");
|
|
}
|
|
bzero(ptrs[i], PAGE_SIZE);
|
|
}
|
|
|
|
kprintf("km5 --> phys ram: %uk avail ram: %uk (%u pages) ptr blocks: %u\n", total_ram/1024,
|
|
avail_ram/1024, max_pages, num_ptr_blocks);
|
|
|
|
// Initially, there must be at least 1 page allocated for each thread stack,
|
|
// one page for kmalloc for this thread struct, plus what we just allocated).
|
|
// This probably isn't the GLB, but its a decent lower bound.
|
|
orig_used = coremap_used_bytes();
|
|
known_pages = num_cpus + num_ptr_blocks + 1;
|
|
if (orig_used < known_pages * PAGE_SIZE) {
|
|
panic ("Not enough pages initially allocated");
|
|
}
|
|
if ((orig_used % PAGE_SIZE) != 0) {
|
|
panic("Coremap used bytes should be a multiple of PAGE_SIZE");
|
|
}
|
|
|
|
// Test for kernel bloat.
|
|
if (kernel_page_limit > 0) {
|
|
uint32_t kpages = (total_ram - avail_ram + PAGE_SIZE) / PAGE_SIZE;
|
|
if (kpages > kernel_page_limit) {
|
|
panic("You're kernel is bloated! Max allowed pages: %d, used pages: %d",
|
|
kernel_page_limit, kpages);
|
|
}
|
|
}
|
|
|
|
orig_magic = magic = random();
|
|
|
|
for (int i = 0; i < KM5_ITERATIONS; i++) {
|
|
// Step 1: allocate all physical memory, with checks along the way
|
|
unsigned int block, pos, oom, pages, used, prev;
|
|
void *page;
|
|
|
|
block = pos = oom = pages = used = 0;
|
|
prev = orig_used;
|
|
|
|
while (pages < max_pages+1) {
|
|
PROGRESS(pages);
|
|
page = kmalloc(PAGE_SIZE);
|
|
if (page == NULL) {
|
|
oom = 1;
|
|
break;
|
|
}
|
|
|
|
// Make sure we can write to the page
|
|
*(uint32_t *)page = magic++;
|
|
|
|
// Make sure the number of used bytes is going up, and by increments of PAGE_SIZE
|
|
used = coremap_used_bytes();
|
|
if (used != prev + PAGE_SIZE) {
|
|
panic("Allocation not equal to PAGE_SIZE. prev: %u used: %u", prev, used);
|
|
}
|
|
prev = used;
|
|
|
|
ptrs[block][pos] = page;
|
|
pos++;
|
|
if (pos >= ptrs_per_page) {
|
|
pos = 0;
|
|
block++;
|
|
}
|
|
pages++;
|
|
}
|
|
|
|
// Step 2: Check that we were able to allocate a reasonable number of pages
|
|
unsigned expected;
|
|
if (avail_page_slack > 0 ) {
|
|
// max avail pages + what we can prove we allocated + some slack
|
|
expected = max_pages - (known_pages + avail_page_slack);
|
|
} else {
|
|
// At the very least, just so we know things are working.
|
|
expected = 3;
|
|
}
|
|
|
|
if (pages < expected) {
|
|
panic("Expected to allocate at least %d pages, only allocated %d",
|
|
expected, pages);
|
|
}
|
|
|
|
// We tried to allocate 1 more page than is available in physical memory. That
|
|
// should fail unless you're swapping out kernel pages, which you should
|
|
// probably not be doing.
|
|
if (!oom) {
|
|
panic("Allocated more pages than physical memory. Are you swapping kernel pages?");
|
|
}
|
|
|
|
// Step 3: free everything and check that we're back to where we started
|
|
for (block = 0; block < num_ptr_blocks; block++) {
|
|
for (pos = 0; pos < ptrs_per_page; pos++) {
|
|
if (ptrs[block][pos] != NULL) {
|
|
// Make sure we got unique addresses
|
|
if ((*(uint32_t *)ptrs[block][pos]) != orig_magic++) {
|
|
panic("km5: expected %u got %u - your VM is broken!",
|
|
orig_magic-1, (*(uint32_t *)ptrs[block][pos]));
|
|
}
|
|
kfree(ptrs[block][pos]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that we're back to where we started
|
|
used = coremap_used_bytes();
|
|
if (used != orig_used) {
|
|
panic("orig (%u) != used (%u)", orig_used, used);
|
|
}
|
|
}
|
|
|
|
//Clean up the pointer blocks
|
|
for (unsigned i = 0; i < num_ptr_blocks; i++) {
|
|
kfree(ptrs[i]);
|
|
}
|
|
|
|
kprintf("\n");
|
|
success(TEST161_SUCCESS, SECRET, "km5");
|
|
|
|
return 0;
|
|
}
|