os161/kern/dev/lamebus/lamebus.c
2015-12-23 00:50:04 +00:00

666 lines
16 KiB
C

/*
* Copyright (c) 2000, 2001, 2002, 2003, 2004, 2005, 2008, 2009
* The President and Fellows of Harvard College.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Machine-independent LAMEbus code.
*/
#include <types.h>
#include <lib.h>
#include <cpu.h>
#include <membar.h>
#include <spinlock.h>
#include <current.h>
#include <lamebus/lamebus.h>
/* Register offsets within each config region */
#define CFGREG_VID 0 /* Vendor ID */
#define CFGREG_DID 4 /* Device ID */
#define CFGREG_DRL 8 /* Device Revision Level */
/* LAMEbus controller private registers (offsets within its config region) */
#define CTLREG_RAMSZ 0x200
#define CTLREG_IRQS 0x204
#define CTLREG_PWR 0x208
#define CTLREG_IRQE 0x20c
#define CTLREG_CPUS 0x210
#define CTLREG_CPUE 0x214
#define CTLREG_SELF 0x218
/* LAMEbus CPU control registers (offsets within each per-cpu region) */
#define CTLCPU_CIRQE 0x000
#define CTLCPU_CIPI 0x004
#define CTLCPU_CRAM 0x300
/*
* Read a config register for the given slot.
*/
static
inline
uint32_t
read_cfg_register(struct lamebus_softc *lb, int slot, uint32_t offset)
{
/* Note that lb might be NULL on some platforms in some contexts. */
offset += LB_CONFIG_SIZE*slot;
return lamebus_read_register(lb, LB_CONTROLLER_SLOT, offset);
}
/*
* Write a config register for a given slot.
*/
static
inline
void
write_cfg_register(struct lamebus_softc *lb, int slot, uint32_t offset,
uint32_t val)
{
offset += LB_CONFIG_SIZE*slot;
lamebus_write_register(lb, LB_CONTROLLER_SLOT, offset, val);
}
/*
* Read one of the bus controller's registers.
*/
static
inline
uint32_t
read_ctl_register(struct lamebus_softc *lb, uint32_t offset)
{
/* Note that lb might be NULL on some platforms in some contexts. */
return read_cfg_register(lb, LB_CONTROLLER_SLOT, offset);
}
/*
* Write one of the bus controller's registers.
*/
static
inline
void
write_ctl_register(struct lamebus_softc *lb, uint32_t offset, uint32_t val)
{
write_cfg_register(lb, LB_CONTROLLER_SLOT, offset, val);
}
/*
* Write one of the bus controller's CPU control registers.
*/
static
inline
void
write_ctlcpu_register(struct lamebus_softc *lb, unsigned hw_cpunum,
uint32_t offset, uint32_t val)
{
offset += LB_CTLCPU_OFFSET + hw_cpunum * LB_CTLCPU_SIZE;
lamebus_write_register(lb, LB_CONTROLLER_SLOT, offset, val);
}
/*
* Find and create secondary CPUs.
*/
void
lamebus_find_cpus(struct lamebus_softc *lamebus)
{
uint32_t mainboard_vid, mainboard_did;
uint32_t cpumask, self, bit, val;
unsigned i, numcpus, bootcpu;
unsigned hwnum[32];
mainboard_vid = read_cfg_register(lamebus, LB_CONTROLLER_SLOT,
CFGREG_VID);
mainboard_did = read_cfg_register(lamebus, LB_CONTROLLER_SLOT,
CFGREG_DID);
if (mainboard_vid == LB_VENDOR_CS161 &&
mainboard_did == LBCS161_UPBUSCTL) {
/* Old uniprocessor mainboard; no cpu registers. */
lamebus->ls_uniprocessor = 1;
return;
}
cpumask = read_ctl_register(lamebus, CTLREG_CPUS);
self = read_ctl_register(lamebus, CTLREG_SELF);
numcpus = 0;
bootcpu = 0;
for (i=0; i<32; i++) {
bit = (uint32_t)1 << i;
if ((cpumask & bit) != 0) {
if (self & bit) {
bootcpu = numcpus;
curcpu->c_hardware_number = i;
}
hwnum[numcpus] = i;
numcpus++;
}
}
for (i=0; i<numcpus; i++) {
if (i != bootcpu) {
cpu_create(hwnum[i]);
}
}
/*
* By default, route all interrupts only to the boot cpu. We
* could be arbitrarily more elaborate, up to things like
* dynamic load balancing.
*/
for (i=0; i<numcpus; i++) {
if (i != bootcpu) {
val = 0;
}
else {
val = 0xffffffff;
}
write_ctlcpu_register(lamebus, hwnum[i], CTLCPU_CIRQE, val);
}
}
/*
* Start up secondary CPUs.
*
* The first word of the CRAM area is set to the entry point for new
* CPUs; the second to the (software) CPU number. Note that the logic
* here assumes the boot CPU is CPU 0 and the others are 1-N as
* created in the function above. This is fine if all CPUs are on
* LAMEbus; if in some environment there are other CPUs about as well
* this logic will have to be made more complex.
*/
void
lamebus_start_cpus(struct lamebus_softc *lamebus)
{
uint32_t cpumask, self, bit;
uint32_t ctlcpuoffset;
uint32_t *cram;
unsigned i;
unsigned cpunum;
if (lamebus->ls_uniprocessor) {
return;
}
cpumask = read_ctl_register(lamebus, CTLREG_CPUS);
self = read_ctl_register(lamebus, CTLREG_SELF);
/* Poke in the startup address. */
cpunum = 1;
for (i=0; i<32; i++) {
bit = (uint32_t)1 << i;
if ((cpumask & bit) != 0) {
if (self & bit) {
continue;
}
ctlcpuoffset = LB_CTLCPU_OFFSET + i * LB_CTLCPU_SIZE;
cram = lamebus_map_area(lamebus,
LB_CONTROLLER_SLOT,
ctlcpuoffset + CTLCPU_CRAM);
cram[0] = (uint32_t)cpu_start_secondary;
cram[1] = cpunum++;
}
}
/* Ensure all the above writes get flushed. */
membar_store_store();
/* Now, enable them all. */
write_ctl_register(lamebus, CTLREG_CPUE, cpumask);
}
/*
* Probe function.
*
* Given a LAMEbus, look for a device that's not already been marked
* in use, has the specified IDs, and has a device revision level at
* least as high as the minimum specified.
*
* Returns the slot number found (0-31) or -1 if nothing suitable was
* found.
*
* If VERSION_RET is not null, return the device version found. This
* allows drivers to blacklist specific versions or otherwise conduct
* more specific checks.
*/
int
lamebus_probe(struct lamebus_softc *sc,
uint32_t vendorid, uint32_t deviceid,
uint32_t lowver, uint32_t *version_ret)
{
int slot;
uint32_t val;
/*
* Because the slot information in sc is used when dispatching
* interrupts, disable interrupts while working with it.
*/
spinlock_acquire(&sc->ls_lock);
for (slot=0; slot<LB_NSLOTS; slot++) {
if (sc->ls_slotsinuse & (1<<slot)) {
/* Slot already in use; skip */
continue;
}
val = read_cfg_register(sc, slot, CFGREG_VID);
if (val!=vendorid) {
/* Wrong vendor id */
continue;
}
val = read_cfg_register(sc, slot, CFGREG_DID);
if (val != deviceid) {
/* Wrong device id */
continue;
}
val = read_cfg_register(sc, slot, CFGREG_DRL);
if (val < lowver) {
/* Unsupported device revision */
continue;
}
if (version_ret != NULL) {
*version_ret = val;
}
/* Found something */
spinlock_release(&sc->ls_lock);
return slot;
}
/* Found nothing */
spinlock_release(&sc->ls_lock);
return -1;
}
/*
* Mark that a slot is in use.
* This prevents the probe routine from returning the same device over
* and over again.
*/
void
lamebus_mark(struct lamebus_softc *sc, int slot)
{
uint32_t mask = ((uint32_t)1) << slot;
KASSERT(slot>=0 && slot < LB_NSLOTS);
spinlock_acquire(&sc->ls_lock);
if ((sc->ls_slotsinuse & mask)!=0) {
panic("lamebus_mark: slot %d already in use\n", slot);
}
sc->ls_slotsinuse |= mask;
spinlock_release(&sc->ls_lock);
}
/*
* Mark that a slot is no longer in use.
*/
void
lamebus_unmark(struct lamebus_softc *sc, int slot)
{
uint32_t mask = ((uint32_t)1) << slot;
KASSERT(slot>=0 && slot < LB_NSLOTS);
spinlock_acquire(&sc->ls_lock);
if ((sc->ls_slotsinuse & mask)==0) {
panic("lamebus_mark: slot %d not marked in use\n", slot);
}
sc->ls_slotsinuse &= ~mask;
spinlock_release(&sc->ls_lock);
}
/*
* Register a function (and a device context pointer) to be called
* when a particular slot signals an interrupt.
*/
void
lamebus_attach_interrupt(struct lamebus_softc *sc, int slot,
void *devdata,
void (*irqfunc)(void *devdata))
{
uint32_t mask = ((uint32_t)1) << slot;
KASSERT(slot>=0 && slot < LB_NSLOTS);
spinlock_acquire(&sc->ls_lock);
if ((sc->ls_slotsinuse & mask)==0) {
panic("lamebus_attach_interrupt: slot %d not marked in use\n",
slot);
}
KASSERT(sc->ls_devdata[slot]==NULL);
KASSERT(sc->ls_irqfuncs[slot]==NULL);
sc->ls_devdata[slot] = devdata;
sc->ls_irqfuncs[slot] = irqfunc;
spinlock_release(&sc->ls_lock);
}
/*
* Unregister a function that was being called when a particular slot
* signaled an interrupt.
*/
void
lamebus_detach_interrupt(struct lamebus_softc *sc, int slot)
{
uint32_t mask = ((uint32_t)1) << slot;
KASSERT(slot>=0 && slot < LB_NSLOTS);
spinlock_acquire(&sc->ls_lock);
if ((sc->ls_slotsinuse & mask)==0) {
panic("lamebus_detach_interrupt: slot %d not marked in use\n",
slot);
}
KASSERT(sc->ls_irqfuncs[slot]!=NULL);
sc->ls_devdata[slot] = NULL;
sc->ls_irqfuncs[slot] = NULL;
spinlock_release(&sc->ls_lock);
}
/*
* Mask/unmask an interrupt using the global IRQE register.
*/
void
lamebus_mask_interrupt(struct lamebus_softc *lamebus, int slot)
{
uint32_t bits, mask = ((uint32_t)1) << slot;
KASSERT(slot >= 0 && slot < LB_NSLOTS);
spinlock_acquire(&lamebus->ls_lock);
bits = read_ctl_register(lamebus, CTLREG_IRQE);
bits &= ~mask;
write_ctl_register(lamebus, CTLREG_IRQE, bits);
spinlock_release(&lamebus->ls_lock);
}
void
lamebus_unmask_interrupt(struct lamebus_softc *lamebus, int slot)
{
uint32_t bits, mask = ((uint32_t)1) << slot;
KASSERT(slot >= 0 && slot < LB_NSLOTS);
spinlock_acquire(&lamebus->ls_lock);
bits = read_ctl_register(lamebus, CTLREG_IRQE);
bits |= mask;
write_ctl_register(lamebus, CTLREG_IRQE, bits);
spinlock_release(&lamebus->ls_lock);
}
/*
* LAMEbus interrupt handling function. (Machine-independent!)
*/
void
lamebus_interrupt(struct lamebus_softc *lamebus)
{
/*
* Note that despite the fact that "spl" stands for "set
* priority level", we don't actually support interrupt
* priorities. When an interrupt happens, we look through the
* slots to find the first interrupting device and call its
* interrupt routine, no matter what that device is.
*
* Note that the entire LAMEbus uses only one on-cpu interrupt line.
* Thus, we do not use any on-cpu interrupt priority system either.
*/
int slot;
uint32_t mask;
uint32_t irqs;
void (*handler)(void *);
void *data;
/* For keeping track of how many bogus things happen in a row. */
static int duds = 0;
int duds_this_time = 0;
/* and we better have a valid bus instance. */
KASSERT(lamebus != NULL);
/* Lock the softc */
spinlock_acquire(&lamebus->ls_lock);
/*
* Read the LAMEbus controller register that tells us which
* slots are asserting an interrupt condition.
*/
irqs = read_ctl_register(lamebus, CTLREG_IRQS);
if (irqs == 0) {
/*
* Huh? None of them? Must be a glitch.
*/
kprintf("lamebus: stray interrupt on cpu %u\n",
curcpu->c_number);
duds++;
duds_this_time++;
/*
* We could just return now, but instead we'll
* continue ahead. Because irqs == 0, nothing in the
* loop will execute, and passing through it gets us
* to the code that checks how many duds we've
* seen. This is important, because we just might get
* a stray interrupt that latches itself on. If that
* happens, we're pretty much toast, but it's better
* to panic and hopefully reset the system than to
* loop forever printing "stray interrupt".
*/
}
/*
* Go through the bits in the value we got back to see which
* ones are set.
*/
for (mask=1, slot=0; slot<LB_NSLOTS; mask<<=1, slot++) {
if ((irqs & mask) == 0) {
/* Nope. */
continue;
}
/*
* This slot is signalling an interrupt.
*/
if ((lamebus->ls_slotsinuse & mask)==0) {
/*
* No device driver is using this slot.
*/
duds++;
duds_this_time++;
continue;
}
if (lamebus->ls_irqfuncs[slot]==NULL) {
/*
* The device driver hasn't installed an interrupt
* handler.
*/
duds++;
duds_this_time++;
continue;
}
/*
* Call the interrupt handler. Release the spinlock
* while we do so, in case other CPUs are handling
* interrupts on other devices.
*/
handler = lamebus->ls_irqfuncs[slot];
data = lamebus->ls_devdata[slot];
spinlock_release(&lamebus->ls_lock);
handler(data);
spinlock_acquire(&lamebus->ls_lock);
/*
* Reload the mask of pending IRQs - if we just called
* hardclock, we might not have come back to this
* context for some time, and it might have changed.
*/
irqs = read_ctl_register(lamebus, CTLREG_IRQS);
}
/*
* If we get interrupts for a slot with no driver or no
* interrupt handler, it's fairly serious. Because LAMEbus
* uses level-triggered interrupts, if we don't shut off the
* condition, we'll keep getting interrupted continuously and
* the system will make no progress. But we don't know how to
* do that if there's no driver or no interrupt handler.
*
* So, if we get too many dud interrupts, panic, since it's
* better to panic and reset than to hang.
*
* If we get through here without seeing any duds this time,
* the condition, whatever it was, has gone away. It might be
* some stupid device we don't have a driver for, or it might
* have been an electrical transient. In any case, warn and
* clear the dud count.
*/
if (duds_this_time == 0 && duds > 0) {
kprintf("lamebus: %d dud interrupts\n", duds);
duds = 0;
}
if (duds > 10000) {
panic("lamebus: too many (%d) dud interrupts\n", duds);
}
/* Unlock the softc */
spinlock_release(&lamebus->ls_lock);
}
/*
* Have the bus controller power the system off.
*/
void
lamebus_poweroff(struct lamebus_softc *lamebus)
{
/*
* Write 0 to the power register to shut the system off.
*/
cpu_irqoff();
write_ctl_register(lamebus, CTLREG_PWR, 0);
/* The power doesn't go off instantly... so halt the cpu. */
cpu_halt();
}
/*
* Ask the bus controller how much memory we have.
*/
uint32_t
lamebus_ramsize(void)
{
/*
* Note that this has to work before bus initialization.
* On machines where lamebus_read_register doesn't work
* before bus initialization, this function can't be used
* for initial RAM size lookup.
*/
return read_ctl_register(NULL, CTLREG_RAMSZ);
}
/*
* Turn on or off the interprocessor interrupt line for a given CPU.
*/
void
lamebus_assert_ipi(struct lamebus_softc *lamebus, struct cpu *target)
{
if (lamebus->ls_uniprocessor) {
return;
}
write_ctlcpu_register(lamebus, target->c_hardware_number,
CTLCPU_CIPI, 1);
}
void
lamebus_clear_ipi(struct lamebus_softc *lamebus, struct cpu *target)
{
if (lamebus->ls_uniprocessor) {
return;
}
write_ctlcpu_register(lamebus, target->c_hardware_number,
CTLCPU_CIPI, 0);
}
/*
* Initial setup.
* Should be called from mainbus_bootstrap().
*/
struct lamebus_softc *
lamebus_init(void)
{
struct lamebus_softc *lamebus;
int i;
/* Allocate space for lamebus data */
lamebus = kmalloc(sizeof(struct lamebus_softc));
if (lamebus==NULL) {
panic("lamebus_init: Out of memory\n");
}
spinlock_init(&lamebus->ls_lock);
/*
* Initialize the LAMEbus data structure.
*/
lamebus->ls_slotsinuse = 1 << LB_CONTROLLER_SLOT;
for (i=0; i<LB_NSLOTS; i++) {
lamebus->ls_devdata[i] = NULL;
lamebus->ls_irqfuncs[i] = NULL;
}
lamebus->ls_uniprocessor = 0;
return lamebus;
}