This library gets linked in by default in userland, and the common files are included in the kernel.
689 lines
16 KiB
C
689 lines
16 KiB
C
/*
|
|
* All the contents of this file are overwritten during automated
|
|
* testing. Please consider this before changing anything in this file.
|
|
*/
|
|
|
|
#include <types.h>
|
|
#include <lib.h>
|
|
#include <thread.h>
|
|
#include <test.h>
|
|
#include <current.h>
|
|
#include <synch.h>
|
|
#include <kern/test161.h>
|
|
#include <spinlock.h>
|
|
|
|
#define PROBLEMS_MAX_YIELDER 16
|
|
#define PROBLEMS_MAX_SPINNER 8192
|
|
|
|
#define TEST161_SUCCESS 0
|
|
#define TEST161_FAIL 1
|
|
|
|
/*
|
|
* Shared initialization routines
|
|
*/
|
|
|
|
static uint32_t startcount;
|
|
static struct lock *testlock;
|
|
static struct cv *startcv;
|
|
static struct semaphore *startsem;
|
|
static struct semaphore *endsem;
|
|
|
|
struct spinlock status_lock;
|
|
static bool test_status = TEST161_FAIL;
|
|
const char *test_message;
|
|
|
|
static
|
|
bool
|
|
failif(bool condition, const char *message) {
|
|
if (condition) {
|
|
spinlock_acquire(&status_lock);
|
|
test_status = TEST161_FAIL;
|
|
test_message = message;
|
|
spinlock_release(&status_lock);
|
|
}
|
|
return condition;
|
|
}
|
|
|
|
/*
|
|
* Helper function to initialize the thread pool.
|
|
*/
|
|
static
|
|
void
|
|
initialize_thread(volatile void* threads[], uint32_t index) {
|
|
failif((threads[index] != NULL), "failed: incorrect thread type");
|
|
threads[index] = curthread->t_stack;
|
|
}
|
|
|
|
/*
|
|
* Helper function to check whether current thread is valid.
|
|
*/
|
|
static
|
|
void
|
|
check_thread(volatile void* threads[], uint32_t index) {
|
|
failif((threads[index] != curthread->t_stack), "failed: incorrect thread type");
|
|
}
|
|
|
|
/*
|
|
* Driver code for the whalemating problem.
|
|
*/
|
|
|
|
#define NMATING 10
|
|
#define MALE 0
|
|
#define FEMALE 1
|
|
#define MATCHMAKER 2
|
|
#define CHECK_TIMES 32
|
|
|
|
static volatile int male_start_count;
|
|
static volatile int male_end_count;
|
|
static volatile int female_start_count;
|
|
static volatile int female_end_count;
|
|
static volatile int matchmaker_start_count;
|
|
static volatile int matchmaker_end_count;
|
|
static volatile int match_count;
|
|
static volatile int concurrent_matchmakers;
|
|
static volatile int max_concurrent_matchmakers;
|
|
|
|
static volatile void* whale_threads[3 * NMATING];
|
|
static volatile int whale_roles[3 * NMATING];
|
|
static struct semaphore *matcher_sem;
|
|
|
|
/*
|
|
* Enforce male_start() and male_end() called from male thread.
|
|
* Similar for female and matchmaker threads
|
|
*/
|
|
static
|
|
void
|
|
check_role(uint32_t index, int role) {
|
|
failif((whale_roles[index] != role), "failed: incorrect role");
|
|
}
|
|
|
|
static
|
|
void
|
|
male_wrapper(void * unused1, unsigned long index) {
|
|
(void)unused1;
|
|
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_thread(whale_threads, (uint32_t)index);
|
|
whale_roles[index] = MALE;
|
|
lock_release(testlock);
|
|
male((uint32_t)index);
|
|
|
|
return;
|
|
}
|
|
void
|
|
male_start(uint32_t index) {
|
|
(void)index;
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, MALE);
|
|
male_start_count++;
|
|
kprintf_n("%s starting\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(startsem);
|
|
}
|
|
void
|
|
male_end(uint32_t index) {
|
|
(void)index;
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, MALE);
|
|
male_end_count++;
|
|
kprintf_n("%s ending\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(endsem);
|
|
}
|
|
|
|
static
|
|
void
|
|
female_wrapper(void * unused1, unsigned long index) {
|
|
(void)unused1;
|
|
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_thread(whale_threads, (uint32_t)index);
|
|
whale_roles[index] = FEMALE;
|
|
lock_release(testlock);
|
|
female((uint32_t)index);
|
|
|
|
return;
|
|
}
|
|
void
|
|
female_start(uint32_t index) {
|
|
(void) index;
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, FEMALE);
|
|
female_start_count++;
|
|
kprintf_n("%s starting\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(startsem);
|
|
}
|
|
void
|
|
female_end(uint32_t index) {
|
|
(void) index;
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, FEMALE);
|
|
female_end_count++;
|
|
kprintf_n("%s ending\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(endsem);
|
|
}
|
|
|
|
static
|
|
void
|
|
matchmaker_wrapper(void * unused1, unsigned long index) {
|
|
(void)unused1;
|
|
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_thread(whale_threads, (uint32_t)index);
|
|
whale_roles[index] = MATCHMAKER;
|
|
lock_release(testlock);
|
|
matchmaker((uint32_t)index);
|
|
|
|
return;
|
|
}
|
|
void
|
|
matchmaker_start(uint32_t index) {
|
|
(void)index;
|
|
P(matcher_sem);
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, MATCHMAKER);
|
|
matchmaker_start_count++;
|
|
concurrent_matchmakers++;
|
|
if (concurrent_matchmakers > max_concurrent_matchmakers) {
|
|
max_concurrent_matchmakers = concurrent_matchmakers;
|
|
}
|
|
kprintf_n("%s starting\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(startsem);
|
|
}
|
|
void
|
|
matchmaker_end(uint32_t index) {
|
|
(void)index;
|
|
lock_acquire(testlock);
|
|
check_thread(whale_threads, index);
|
|
check_role(index, MATCHMAKER);
|
|
match_count++;
|
|
matchmaker_end_count++;
|
|
concurrent_matchmakers--;
|
|
kprintf_n("%s ending\n", curthread->t_name);
|
|
kprintf_t(".");
|
|
lock_release(testlock);
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
V(endsem);
|
|
}
|
|
|
|
int
|
|
whalemating(int nargs, char **args) {
|
|
(void) nargs;
|
|
(void) args;
|
|
|
|
int i, j, err = 0;
|
|
char name[32];
|
|
bool loop_status;
|
|
int total_count = 0;
|
|
|
|
male_start_count = 0 ;
|
|
male_end_count = 0 ;
|
|
female_start_count = 0 ;
|
|
female_end_count = 0 ;
|
|
matchmaker_start_count = 0;
|
|
matchmaker_end_count = 0;
|
|
match_count = 0;
|
|
concurrent_matchmakers = 0;
|
|
max_concurrent_matchmakers = 0;
|
|
|
|
kprintf_n("Starting sp1...\n");
|
|
kprintf_n("If this tests hangs, your solution is incorrect.\n");
|
|
|
|
testlock = lock_create("testlock");
|
|
if (testlock == NULL) {
|
|
panic("sp1: lock_create failed\n");
|
|
}
|
|
startsem = sem_create("startsem", 0);
|
|
if (startsem == NULL) {
|
|
panic("sp1: sem_create failed\n");
|
|
}
|
|
endsem = sem_create("endsem", 0);
|
|
if (endsem == NULL) {
|
|
panic("sp1: sem_create failed\n");
|
|
}
|
|
matcher_sem = sem_create("matcher_sem", 0);
|
|
if (matcher_sem == NULL) {
|
|
panic("sp1: sem_create failed\n");
|
|
}
|
|
spinlock_init(&status_lock);
|
|
test_status = TEST161_SUCCESS;
|
|
test_message = "";
|
|
|
|
whalemating_init();
|
|
|
|
/* Start males and females only. */
|
|
for (i = 0; i < 2; i++) {
|
|
for (j = 0; j < NMATING; j++) {
|
|
kprintf_t(".");
|
|
int index = (i * NMATING) + j;
|
|
whale_threads[index] = NULL;
|
|
switch (i) {
|
|
case 0:
|
|
snprintf(name, sizeof(name), "Male Whale Thread %d", index);
|
|
err = thread_fork(name, NULL, male_wrapper, NULL, index);
|
|
break;
|
|
case 1:
|
|
snprintf(name, sizeof(name), "Female Whale Thread %d", index);
|
|
err = thread_fork(name, NULL, female_wrapper, NULL, index);
|
|
break;
|
|
}
|
|
total_count += 1;
|
|
if (err) {
|
|
panic("sp1: thread_fork failed: (%s)\n", strerror(err));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Wait for males and females to start. */
|
|
for (i = 0; i < NMATING * 2; i++) {
|
|
kprintf_t(".");
|
|
P(startsem);
|
|
}
|
|
|
|
/* Make sure nothing is happening... */
|
|
loop_status = TEST161_SUCCESS;
|
|
for (i = 0; i < CHECK_TIMES && loop_status == TEST161_SUCCESS; i++) {
|
|
kprintf_t(".");
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
lock_acquire(testlock);
|
|
if ((male_start_count != NMATING) || (female_start_count != NMATING) ||
|
|
(matchmaker_start_count + male_end_count + female_end_count + matchmaker_end_count != 0)) {
|
|
loop_status = TEST161_FAIL;
|
|
}
|
|
lock_release(testlock);
|
|
}
|
|
if (failif((loop_status == TEST161_FAIL), "failed: uncoordinated matchmaking is occurring")) {
|
|
goto done;
|
|
}
|
|
|
|
/* Create the matchmakers */
|
|
for (j = 0; j < NMATING; j++) {
|
|
kprintf_t(".");
|
|
int index = (2 * NMATING) + j;
|
|
whale_threads[index] = NULL;
|
|
snprintf(name, sizeof(name), "Matchmaker Whale Thread %d", index);
|
|
err = thread_fork(name, NULL, matchmaker_wrapper, NULL, index);
|
|
if (err) {
|
|
panic("sp1: thread_fork failed: (%s)\n", strerror(err));
|
|
}
|
|
total_count++;
|
|
}
|
|
|
|
/*
|
|
* Release a random number of matchmakers and wait for them and their
|
|
* matches to finish.
|
|
*/
|
|
int pivot = (random() % (NMATING - 2)) + 1;
|
|
for (i = 0; i < pivot; i++) {
|
|
kprintf_t(".");
|
|
V(matcher_sem);
|
|
}
|
|
for (i = 0; i < 3 * pivot; i++) {
|
|
kprintf_t(".");
|
|
P(endsem);
|
|
total_count--;
|
|
}
|
|
|
|
/* Make sure nothing else is happening... */
|
|
loop_status = TEST161_SUCCESS;
|
|
for (i = 0; i < CHECK_TIMES && loop_status == TEST161_SUCCESS; i++) {
|
|
kprintf_t(".");
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
lock_acquire(testlock);
|
|
if ((male_start_count != NMATING) || (female_start_count != NMATING) ||
|
|
(matchmaker_start_count != pivot) || (male_end_count != pivot) ||
|
|
(female_end_count != pivot) || (matchmaker_end_count != pivot)) {
|
|
loop_status = TEST161_FAIL;
|
|
}
|
|
lock_release(testlock);
|
|
}
|
|
if (failif((loop_status == TEST161_FAIL), "failed: uncoordinated matchmaking is occurring")) {
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Release the rest of the matchmakers and wait for everyone to finish.
|
|
*/
|
|
|
|
for (i = pivot; i < NMATING; i++) {
|
|
kprintf_t(".");
|
|
V(matcher_sem);
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
for (j = pivot; j < NMATING; j++) {
|
|
kprintf_t(".");
|
|
P(endsem);
|
|
total_count--;
|
|
}
|
|
}
|
|
|
|
failif((max_concurrent_matchmakers == 1), "failed: no matchmaker concurrency");
|
|
|
|
whalemating_cleanup();
|
|
|
|
done:
|
|
for (i = 0; i < total_count; i++) {
|
|
P(endsem);
|
|
}
|
|
|
|
lock_destroy(testlock);
|
|
sem_destroy(startsem);
|
|
sem_destroy(endsem);
|
|
sem_destroy(matcher_sem);
|
|
|
|
kprintf_t("\n");
|
|
if (test_status != TEST161_SUCCESS) {
|
|
secprintf(SECRET, test_message, "sp1");
|
|
}
|
|
success(test_status, SECRET, "sp1");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Driver code for the stoplight problem.
|
|
*/
|
|
|
|
#define NCARS 64
|
|
#define NUM_QUADRANTS 4
|
|
#define UNKNOWN_CAR -1
|
|
#define PASSED_CAR -2
|
|
|
|
#define GO_STRAIGHT 0
|
|
#define TURN_LEFT 1
|
|
#define TURN_RIGHT 2
|
|
|
|
static volatile int quadrant_array[NUM_QUADRANTS];
|
|
static volatile int max_car_count;
|
|
static volatile int all_quadrant;
|
|
static volatile int car_locations[NCARS];
|
|
static volatile int car_directions[NCARS];
|
|
static volatile int car_turns[NCARS];
|
|
static volatile int car_turn_times[NCARS];
|
|
static volatile void* car_threads[NCARS];
|
|
|
|
static
|
|
void
|
|
initialize_car_thread(uint32_t index, uint32_t direction, uint32_t turn) {
|
|
initialize_thread(car_threads, index);
|
|
car_directions[index] = direction;
|
|
car_turns[index] = turn;
|
|
car_turn_times[index] = 0;
|
|
}
|
|
|
|
static
|
|
void
|
|
check_intersection() {
|
|
int n = 0;
|
|
for (int i = 0; i < NUM_QUADRANTS; i++) {
|
|
failif((quadrant_array[i] > 1), "failed: collision");
|
|
n += quadrant_array[i];
|
|
}
|
|
max_car_count = n > max_car_count ? n : max_car_count;
|
|
}
|
|
|
|
/*
|
|
* When car move, must call this function and hold a lock.
|
|
* It first checks current intersection status make sure no more than one car in one quadrant.
|
|
* Then it removes current car from previous location.
|
|
* In the end, it returns current car's index for inQuadrant, to let inQuadrant update car_locations array.
|
|
*/
|
|
static
|
|
int
|
|
move(uint32_t index) {
|
|
check_thread(car_threads, index);
|
|
check_intersection();
|
|
int pre_location = car_locations[index];
|
|
if (pre_location != UNKNOWN_CAR && pre_location != PASSED_CAR) {
|
|
quadrant_array[pre_location]--;
|
|
}
|
|
return pre_location;
|
|
}
|
|
|
|
static
|
|
void
|
|
turnright_wrapper(void *index, unsigned long direction)
|
|
{
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_car_thread((uint32_t)index, (uint32_t)direction, TURN_RIGHT);
|
|
startcount--;
|
|
if (startcount == 0) {
|
|
cv_broadcast(startcv, testlock);
|
|
} else {
|
|
cv_wait(startcv, testlock);
|
|
}
|
|
lock_release(testlock);
|
|
turnright((uint32_t)direction, (uint32_t)index);
|
|
V(endsem);
|
|
|
|
return;
|
|
}
|
|
static
|
|
void
|
|
gostraight_wrapper(void *index, unsigned long direction)
|
|
{
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_car_thread((uint32_t)index, (uint32_t)direction, GO_STRAIGHT);
|
|
startcount--;
|
|
if (startcount == 0) {
|
|
cv_broadcast(startcv, testlock);
|
|
} else {
|
|
cv_wait(startcv, testlock);
|
|
}
|
|
lock_release(testlock);
|
|
gostraight((uint32_t)direction, (uint32_t)index);
|
|
V(endsem);
|
|
|
|
return;
|
|
}
|
|
static
|
|
void
|
|
turnleft_wrapper(void *index, unsigned long direction)
|
|
{
|
|
random_yielder(4);
|
|
lock_acquire(testlock);
|
|
initialize_car_thread((uint32_t)index, (uint32_t)direction, TURN_LEFT);
|
|
startcount--;
|
|
if (startcount == 0) {
|
|
cv_broadcast(startcv, testlock);
|
|
} else {
|
|
cv_wait(startcv, testlock);
|
|
}
|
|
lock_release(testlock);
|
|
turnleft((uint32_t)direction, (uint32_t)index);
|
|
V(endsem);
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
inQuadrant(int quadrant, uint32_t index) {
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
lock_acquire(testlock);
|
|
int pre_quadrant = move(index);
|
|
|
|
int target_quadrant = car_directions[index];
|
|
switch (car_turn_times[index]) {
|
|
case 0:
|
|
failif((pre_quadrant != UNKNOWN_CAR), "failed: invalid turn");
|
|
break;
|
|
case 1:
|
|
failif((pre_quadrant != target_quadrant), "failed: invalid turn");
|
|
target_quadrant = (target_quadrant + NUM_QUADRANTS - 1) % NUM_QUADRANTS;
|
|
break;
|
|
case 2:
|
|
target_quadrant = (target_quadrant + NUM_QUADRANTS - 1) % NUM_QUADRANTS;
|
|
failif((pre_quadrant != target_quadrant), "failed: invalid turn");
|
|
target_quadrant = (target_quadrant + NUM_QUADRANTS - 1) % NUM_QUADRANTS;
|
|
break;
|
|
default:
|
|
failif(true, "failed: invalid turn");
|
|
break;
|
|
}
|
|
failif((quadrant != target_quadrant), "failed: invalid turn");
|
|
car_turn_times[index]++;
|
|
|
|
failif((quadrant_array[quadrant] > 0), "failed: collision");
|
|
|
|
quadrant_array[quadrant]++;
|
|
car_locations[index] = quadrant;
|
|
all_quadrant++;
|
|
|
|
lock_release(testlock);
|
|
kprintf_n("%s in quadrant %d\n", curthread->t_name, quadrant);
|
|
}
|
|
|
|
void
|
|
leaveIntersection(uint32_t index) {
|
|
random_yielder(PROBLEMS_MAX_YIELDER);
|
|
random_spinner(PROBLEMS_MAX_SPINNER);
|
|
lock_acquire(testlock);
|
|
move(index);
|
|
|
|
switch (car_turns[index]) {
|
|
case GO_STRAIGHT:
|
|
failif((car_turn_times[index] != 2), "failed: incorrect turn");
|
|
break;
|
|
case TURN_LEFT:
|
|
failif((car_turn_times[index] != 3), "failed: incorrect turn");
|
|
break;
|
|
case TURN_RIGHT:
|
|
failif((car_turn_times[index] != 1), "failed: incorrect turn");
|
|
break;
|
|
default:
|
|
failif(true, "failed: incorrect turn");
|
|
break;
|
|
}
|
|
|
|
car_locations[index] = PASSED_CAR;
|
|
lock_release(testlock);
|
|
kprintf_n("%s left the intersection\n", curthread->t_name);
|
|
}
|
|
|
|
int stoplight(int nargs, char **args) {
|
|
(void) nargs;
|
|
(void) args;
|
|
int i, direction, turn, err = 0;
|
|
char name[32];
|
|
int required_quadrant = 0;
|
|
int passed = 0;
|
|
|
|
max_car_count = 0;
|
|
all_quadrant = 0;
|
|
|
|
kprintf_n("Starting sp2...\n");
|
|
kprintf_n("If this tests hangs, your solution is incorrect.\n");
|
|
|
|
for (i = 0; i < NUM_QUADRANTS; i++) {
|
|
quadrant_array[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < NCARS; i++) {
|
|
car_locations[i] = UNKNOWN_CAR;
|
|
car_threads[i] = NULL;
|
|
car_directions[i] = -1;
|
|
}
|
|
|
|
startcount = NCARS;
|
|
testlock = lock_create("testlock");
|
|
if (testlock == NULL) {
|
|
panic("sp2: lock_create failed\n");
|
|
}
|
|
startcv = cv_create("startcv");
|
|
if (startcv == NULL) {
|
|
panic("sp2: cv_create failed\n");
|
|
}
|
|
endsem = sem_create("endsem", 0);
|
|
if (endsem == NULL) {
|
|
panic("sp2: sem_create failed\n");
|
|
}
|
|
spinlock_init(&status_lock);
|
|
test_status = TEST161_SUCCESS;
|
|
|
|
stoplight_init();
|
|
|
|
for (i = 0; i < NCARS; i++) {
|
|
kprintf_t(".");
|
|
|
|
direction = random() % 4;
|
|
turn = random() % 3;
|
|
|
|
snprintf(name, sizeof(name), "Car Thread %d", i);
|
|
|
|
switch (turn) {
|
|
case GO_STRAIGHT:
|
|
err = thread_fork(name, NULL, gostraight_wrapper, (void *)i, direction);
|
|
required_quadrant += 2;
|
|
break;
|
|
case TURN_LEFT:
|
|
err = thread_fork(name, NULL, turnleft_wrapper, (void *)i, direction);
|
|
required_quadrant += 3;
|
|
break;
|
|
case TURN_RIGHT:
|
|
err = thread_fork(name, NULL, turnright_wrapper, (void *)i, direction);
|
|
required_quadrant += 1;
|
|
break;
|
|
}
|
|
if (err) {
|
|
panic("sp2: thread_fork failed: (%s)\n", strerror(err));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < NCARS; i++) {
|
|
kprintf_t(".");
|
|
P(endsem);
|
|
}
|
|
|
|
stoplight_cleanup();
|
|
|
|
for (i = 0; i < NCARS; i++) {
|
|
passed += car_locations[i] == PASSED_CAR ? 1 : 0;
|
|
}
|
|
if ((test_status == TEST161_SUCCESS) &&
|
|
(!(failif((passed != NCARS), "failed: not enough cars"))) &&
|
|
(!(failif((all_quadrant != required_quadrant), "failed: didn't do the right turns"))) &&
|
|
(!(failif((max_car_count <= 1), "failed: no concurrency achieved")))) {};
|
|
|
|
lock_destroy(testlock);
|
|
cv_destroy(startcv);
|
|
sem_destroy(endsem);
|
|
|
|
kprintf_t("\n");
|
|
if (test_status != TEST161_SUCCESS) {
|
|
secprintf(SECRET, test_message, "sp2");
|
|
}
|
|
success(test_status, SECRET, "sp2");
|
|
|
|
return 0;
|
|
}
|