fix: format + dont track build folders

This commit is contained in:
minhtrannhat 2025-03-02 18:08:51 -05:00
parent b77ad042ca
commit c173f2b9b8
Signed by: minhtrannhat
GPG Key ID: E13CFA85C53F8062
8 changed files with 1651 additions and 1862 deletions

3
.gitignore vendored
View File

@ -1,2 +1,3 @@
kern/compile/
build/
build/*
**/build

View File

@ -92,18 +92,9 @@ void spllower(int oldipl, int newipl);
////////////////////////////////////////////////////////////
SPL_INLINE
int
spl0(void)
{
return splx(IPL_NONE);
}
int spl0(void) { return splx(IPL_NONE); }
SPL_INLINE
int
splhigh(void)
{
return splx(IPL_HIGH);
}
int splhigh(void) { return splx(IPL_HIGH); }
#endif /* _SPL_H_ */

View File

@ -34,7 +34,6 @@
* Header file for synchronization primitives.
*/
#include <spinlock.h>
/*
@ -62,7 +61,6 @@ void sem_destroy(struct semaphore *);
void P(struct semaphore *);
void V(struct semaphore *);
/*
* Simple lock for mutual exclusion.
*
@ -97,7 +95,6 @@ void lock_acquire(struct lock *);
void lock_release(struct lock *);
bool lock_do_i_hold(struct lock *);
/*
* Condition variable.
*
@ -138,5 +135,4 @@ void cv_wait(struct cv *cv, struct lock *lock);
void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);
#endif /* _SYNCH_H_ */

View File

@ -40,7 +40,6 @@
#include <vfs.h> // for vfs_sync()
#include <lamebus/ltrace.h> // for ltrace_stop()
/* Flags word for DEBUG() macro. */
uint32_t dbflags = 0;
@ -50,20 +49,16 @@ static struct lock *kprintf_lock;
/* Lock for polled kprintfs */
static struct spinlock kprintf_spinlock;
/*
* Warning: all this has to work from interrupt handlers and when
* interrupts are disabled.
*/
/*
* Create the kprintf lock. Must be called before creating a second
* thread or enabling a second CPU.
*/
void
kprintf_bootstrap(void)
{
void kprintf_bootstrap(void) {
KASSERT(kprintf_lock == NULL);
kprintf_lock = lock_create("kprintf_lock");
@ -76,15 +71,12 @@ kprintf_bootstrap(void)
/*
* Send characters to the console. Backend for __printf.
*/
static
void
console_send(void *junk, const char *data, size_t len)
{
static void console_send(void *junk, const char *data, size_t len) {
size_t i;
(void)junk;
for (i=0; i<len; i++) {
for (i = 0; i < len; i++) {
putch(data[i]);
}
}
@ -92,22 +84,17 @@ console_send(void *junk, const char *data, size_t len)
/*
* Printf to the console.
*/
int
kprintf(const char *fmt, ...)
{
int kprintf(const char *fmt, ...) {
int chars;
va_list ap;
bool dolock;
dolock = kprintf_lock != NULL
&& curthread->t_in_interrupt == false
&& curthread->t_curspl == 0
&& curcpu->c_spinlocks == 0;
dolock = kprintf_lock != NULL && curthread->t_in_interrupt == false &&
curthread->t_curspl == 0 && curcpu->c_spinlocks == 0;
if (dolock) {
lock_acquire(kprintf_lock);
}
else {
} else {
spinlock_acquire(&kprintf_spinlock);
}
@ -117,8 +104,7 @@ kprintf(const char *fmt, ...)
if (dolock) {
lock_release(kprintf_lock);
}
else {
} else {
spinlock_release(&kprintf_spinlock);
}
@ -130,9 +116,7 @@ kprintf(const char *fmt, ...)
* passed and then halts the system.
*/
void
panic(const char *fmt, ...)
{
void panic(const char *fmt, ...) {
va_list ap;
/*
@ -202,15 +186,13 @@ panic(const char *fmt, ...)
* Last resort, just in case.
*/
for (;;);
for (;;)
;
}
/*
* Assertion failures go through this.
*/
void
badassert(const char *expr, const char *file, int line, const char *func)
{
panic("Assertion failed: %s, at %s:%d (%s)\n",
expr, file, line, func);
void badassert(const char *expr, const char *file, int line, const char *func) {
panic("Assertion failed: %s, at %s:%d (%s)\n", expr, file, line, func);
}

View File

@ -51,7 +51,6 @@
#include <version.h>
#include "autoconf.h" // for pseudoconfig
/*
* These two pieces of data are maintained by the makefiles and build system.
* buildconfig is the name of the config file the kernel was configured with.
@ -71,14 +70,10 @@ static const char harvard_copyright[] =
"Copyright (c) 2000, 2001-2005, 2008-2011, 2013, 2014\n"
" President and Fellows of Harvard College. All rights reserved.\n";
/*
* Initial boot sequence.
*/
static
void
boot(void)
{
static void boot(void) {
/*
* The order of these is important!
* Don't go changing it without thinking about the consequences.
@ -101,8 +96,8 @@ boot(void)
kprintf("%s", harvard_copyright);
kprintf("\n");
kprintf("Put-your-group-name-here's system version %s (%s #%d)\n",
GROUP_VERSION, buildconfig, buildversion);
kprintf("Minh Tran's system version %s (%s #%d)\n", GROUP_VERSION,
buildconfig, buildversion);
kprintf("\n");
/* Early initialization. */
@ -143,10 +138,7 @@ boot(void)
/*
* Shutdown sequence. Opposite to boot().
*/
static
void
shutdown(void)
{
static void shutdown(void) {
kprintf("Shutting down.\n");
@ -168,9 +160,7 @@ shutdown(void)
* not because this is where system call code should go. Other syscall
* code should probably live in the "syscall" directory.
*/
int
sys_reboot(int code)
{
int sys_reboot(int code) {
switch (code) {
case RB_REBOOT:
case RB_HALT:
@ -205,9 +195,7 @@ sys_reboot(int code)
* Kernel main. Boot up, then fork the menu thread; wait for a reboot
* request, and then shut down.
*/
void
kmain(char *arguments)
{
void kmain(char *arguments) {
boot();
menu(arguments);

View File

@ -44,9 +44,7 @@
//
// Semaphore.
struct semaphore *
sem_create(const char *name, unsigned initial_count)
{
struct semaphore *sem_create(const char *name, unsigned initial_count) {
struct semaphore *sem;
sem = kmalloc(sizeof(*sem));
@ -73,9 +71,7 @@ sem_create(const char *name, unsigned initial_count)
return sem;
}
void
sem_destroy(struct semaphore *sem)
{
void sem_destroy(struct semaphore *sem) {
KASSERT(sem != NULL);
/* wchan_cleanup will assert if anyone's waiting on it */
@ -85,9 +81,7 @@ sem_destroy(struct semaphore *sem)
kfree(sem);
}
void
P(struct semaphore *sem)
{
void P(struct semaphore *sem) {
KASSERT(sem != NULL);
/*
@ -120,9 +114,7 @@ P(struct semaphore *sem)
spinlock_release(&sem->sem_lock);
}
void
V(struct semaphore *sem)
{
void V(struct semaphore *sem) {
KASSERT(sem != NULL);
spinlock_acquire(&sem->sem_lock);
@ -138,9 +130,7 @@ V(struct semaphore *sem)
//
// Lock.
struct lock *
lock_create(const char *name)
{
struct lock *lock_create(const char *name) {
struct lock *lock;
lock = kmalloc(sizeof(*lock));
@ -161,9 +151,7 @@ lock_create(const char *name)
return lock;
}
void
lock_destroy(struct lock *lock)
{
void lock_destroy(struct lock *lock) {
KASSERT(lock != NULL);
// add stuff here as needed
@ -172,34 +160,28 @@ lock_destroy(struct lock *lock)
kfree(lock);
}
void
lock_acquire(struct lock *lock)
{
void lock_acquire(struct lock *lock) {
/* Call this (atomically) before waiting for a lock */
//HANGMAN_WAIT(&curthread->t_hangman, &lock->lk_hangman);
// HANGMAN_WAIT(&curthread->t_hangman, &lock->lk_hangman);
// Write this
(void)lock; // suppress warning until code gets written
/* Call this (atomically) once the lock is acquired */
//HANGMAN_ACQUIRE(&curthread->t_hangman, &lock->lk_hangman);
// HANGMAN_ACQUIRE(&curthread->t_hangman, &lock->lk_hangman);
}
void
lock_release(struct lock *lock)
{
void lock_release(struct lock *lock) {
/* Call this (atomically) when the lock is released */
//HANGMAN_RELEASE(&curthread->t_hangman, &lock->lk_hangman);
// HANGMAN_RELEASE(&curthread->t_hangman, &lock->lk_hangman);
// Write this
(void)lock; // suppress warning until code gets written
}
bool
lock_do_i_hold(struct lock *lock)
{
bool lock_do_i_hold(struct lock *lock) {
// Write this
(void)lock; // suppress warning until code gets written
@ -211,10 +193,7 @@ lock_do_i_hold(struct lock *lock)
//
// CV
struct cv *
cv_create(const char *name)
{
struct cv *cv_create(const char *name) {
struct cv *cv;
cv = kmalloc(sizeof(*cv));
@ -223,7 +202,7 @@ cv_create(const char *name)
}
cv->cv_name = kstrdup(name);
if (cv->cv_name==NULL) {
if (cv->cv_name == NULL) {
kfree(cv);
return NULL;
}
@ -233,9 +212,7 @@ cv_create(const char *name)
return cv;
}
void
cv_destroy(struct cv *cv)
{
void cv_destroy(struct cv *cv) {
KASSERT(cv != NULL);
// add stuff here as needed
@ -244,25 +221,19 @@ cv_destroy(struct cv *cv)
kfree(cv);
}
void
cv_wait(struct cv *cv, struct lock *lock)
{
void cv_wait(struct cv *cv, struct lock *lock) {
// Write this
(void)cv; // suppress warning until code gets written
(void)lock; // suppress warning until code gets written
}
void
cv_signal(struct cv *cv, struct lock *lock)
{
void cv_signal(struct cv *cv, struct lock *lock) {
// Write this
(void)cv; // suppress warning until code gets written
(void)lock; // suppress warning until code gets written
}
void
cv_broadcast(struct cv *cv, struct lock *lock)
{
void cv_broadcast(struct cv *cv, struct lock *lock) {
// Write this
(void)cv; // suppress warning until code gets written
(void)lock; // suppress warning until code gets written

View File

@ -51,7 +51,6 @@
#include <mainbus.h>
#include <vnode.h>
/* Magic number used as a guard value on kernel thread stacks. */
#define THREAD_STACK_MAGIC 0xbaadf00d
@ -76,10 +75,7 @@ static struct semaphore *cpu_startup_sem;
* (sometimes) catch kernel stack overflows. Use thread_checkstack()
* to test this.
*/
static
void
thread_checkstack_init(struct thread *thread)
{
static void thread_checkstack_init(struct thread *thread) {
((uint32_t *)thread->t_stack)[0] = THREAD_STACK_MAGIC;
((uint32_t *)thread->t_stack)[1] = THREAD_STACK_MAGIC;
((uint32_t *)thread->t_stack)[2] = THREAD_STACK_MAGIC;
@ -96,15 +92,12 @@ thread_checkstack_init(struct thread *thread)
* cannot be freed (which in turn is the case if the stack is the boot
* stack, and the thread is the boot thread) this doesn't do anything.
*/
static
void
thread_checkstack(struct thread *thread)
{
static void thread_checkstack(struct thread *thread) {
if (thread->t_stack != NULL) {
KASSERT(((uint32_t*)thread->t_stack)[0] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t*)thread->t_stack)[1] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t*)thread->t_stack)[2] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t*)thread->t_stack)[3] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t *)thread->t_stack)[0] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t *)thread->t_stack)[1] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t *)thread->t_stack)[2] == THREAD_STACK_MAGIC);
KASSERT(((uint32_t *)thread->t_stack)[3] == THREAD_STACK_MAGIC);
}
}
@ -112,10 +105,7 @@ thread_checkstack(struct thread *thread)
* Create a thread. This is used both to create a first thread
* for each CPU and to create subsequent forked threads.
*/
static
struct thread *
thread_create(const char *name)
{
static struct thread *thread_create(const char *name) {
struct thread *thread;
DEBUGASSERT(name != NULL);
@ -160,9 +150,7 @@ thread_create(const char *name)
* board config or whatnot) is tracked separately because it is not
* necessarily anything sane or meaningful.
*/
struct cpu *
cpu_create(unsigned hardware_number)
{
struct cpu *cpu_create(unsigned hardware_number) {
struct cpu *c;
int result;
char namebuf[16];
@ -208,8 +196,7 @@ cpu_create(unsigned hardware_number)
* make it possible to free the boot stack?)
*/
/*c->c_curthread->t_stack = ... */
}
else {
} else {
c->c_curthread->t_stack = kmalloc(STACK_SIZE);
if (c->c_curthread->t_stack == NULL) {
panic("cpu_create: couldn't allocate stack");
@ -260,10 +247,7 @@ cpu_create(unsigned hardware_number)
*
* (Freeing the stack you're actually using to run is ... inadvisable.)
*/
static
void
thread_destroy(struct thread *thread)
{
static void thread_destroy(struct thread *thread) {
KASSERT(thread != curthread);
KASSERT(thread->t_state != S_RUN);
@ -293,10 +277,7 @@ thread_destroy(struct thread *thread)
*
* The list of zombies is per-cpu.
*/
static
void
exorcise(void)
{
static void exorcise(void) {
struct thread *z;
while ((z = threadlist_remhead(&curcpu->c_zombies)) != NULL) {
@ -311,9 +292,7 @@ exorcise(void)
* possible) to make sure we don't end up letting any other threads
* run.
*/
void
thread_panic(void)
{
void thread_panic(void) {
/*
* Kill off other CPUs.
*
@ -353,9 +332,7 @@ thread_panic(void)
/*
* At system shutdown, ask the other CPUs to switch off.
*/
void
thread_shutdown(void)
{
void thread_shutdown(void) {
/*
* Stop the other CPUs.
*
@ -368,9 +345,7 @@ thread_shutdown(void)
/*
* Thread system initialization.
*/
void
thread_bootstrap(void)
{
void thread_bootstrap(void) {
cpuarray_init(&allcpus);
/*
@ -402,9 +377,7 @@ thread_bootstrap(void)
* to do anything. The startup thread can just exit; we only need it
* to be able to get into thread_switch() properly.
*/
void
cpu_hatch(unsigned software_number)
{
void cpu_hatch(unsigned software_number) {
char buf[64];
KASSERT(curcpu != NULL);
@ -423,9 +396,7 @@ cpu_hatch(unsigned software_number)
/*
* Start up secondary cpus. Called from boot().
*/
void
thread_start_cpus(void)
{
void thread_start_cpus(void) {
char buf[64];
unsigned i;
@ -435,7 +406,7 @@ thread_start_cpus(void)
cpu_startup_sem = sem_create("cpu_hatch", 0);
mainbus_start_cpus();
for (i=0; i<cpuarray_num(&allcpus) - 1; i++) {
for (i = 0; i < cpuarray_num(&allcpus) - 1; i++) {
P(cpu_startup_sem);
}
sem_destroy(cpu_startup_sem);
@ -447,10 +418,8 @@ thread_start_cpus(void)
*
* targetcpu might be curcpu; it might not be, too.
*/
static
void
thread_make_runnable(struct thread *target, bool already_have_lock)
{
static void thread_make_runnable(struct thread *target,
bool already_have_lock) {
struct cpu *targetcpu;
/* Lock the run queue of the target thread's cpu. */
@ -459,8 +428,7 @@ thread_make_runnable(struct thread *target, bool already_have_lock)
if (already_have_lock) {
/* The target thread's cpu should be already locked. */
KASSERT(spinlock_do_i_hold(&targetcpu->c_runqueue_lock));
}
else {
} else {
spinlock_acquire(&targetcpu->c_runqueue_lock);
}
@ -491,12 +459,9 @@ thread_make_runnable(struct thread *target, bool already_have_lock)
* process is inherited from the caller. It will start on the same CPU
* as the caller, unless the scheduler intervenes first.
*/
int
thread_fork(const char *name,
struct proc *proc,
int thread_fork(const char *name, struct proc *proc,
void (*entrypoint)(void *data1, unsigned long data2),
void *data1, unsigned long data2)
{
void *data1, unsigned long data2) {
struct thread *newthread;
int result;
@ -557,10 +522,8 @@ thread_fork(const char *name,
* WC, protected by the spinlock LK. Otherwise WC and Lk should be
* NULL.
*/
static
void
thread_switch(threadstate_t newstate, struct wchan *wc, struct spinlock *lk)
{
static void thread_switch(threadstate_t newstate, struct wchan *wc,
struct spinlock *lk) {
struct thread *cur, *next;
int spl;
@ -709,7 +672,6 @@ thread_switch(threadstate_t newstate, struct wchan *wc, struct spinlock *lk)
* thread_startup.
*/
/* Clear the wait channel and set the thread state. */
cur->t_wchan_name = NULL;
cur->t_state = S_RUN;
@ -735,10 +697,8 @@ thread_switch(threadstate_t newstate, struct wchan *wc, struct spinlock *lk)
* thread_switch, the beginning part of this function must match the
* tail of thread_switch.
*/
void
thread_startup(void (*entrypoint)(void *data1, unsigned long data2),
void *data1, unsigned long data2)
{
void thread_startup(void (*entrypoint)(void *data1, unsigned long data2),
void *data1, unsigned long data2) {
struct thread *cur;
cur = curthread;
@ -775,9 +735,7 @@ thread_startup(void (*entrypoint)(void *data1, unsigned long data2),
*
* Does not return.
*/
void
thread_exit(void)
{
void thread_exit(void) {
struct thread *cur;
cur = curthread;
@ -803,11 +761,7 @@ thread_exit(void)
/*
* Yield the cpu to another process, but stay runnable.
*/
void
thread_yield(void)
{
thread_switch(S_READY, NULL, NULL);
}
void thread_yield(void) { thread_switch(S_READY, NULL, NULL); }
////////////////////////////////////////////////////////////
@ -818,9 +772,7 @@ thread_yield(void)
* the current CPU's run queue by job priority.
*/
void
schedule(void)
{
void schedule(void) {
/*
* You can write this. If we do nothing, threads will run in
* round-robin fashion.
@ -844,9 +796,7 @@ schedule(void)
* System/161 does not (yet) model such cache effects, we'll be very
* aggressive.
*/
void
thread_consider_migration(void)
{
void thread_consider_migration(void) {
unsigned my_count, total_count, one_share, to_send;
unsigned i, numcpus;
struct cpu *c;
@ -855,7 +805,7 @@ thread_consider_migration(void)
my_count = total_count = 0;
numcpus = cpuarray_num(&allcpus);
for (i=0; i<numcpus; i++) {
for (i = 0; i < numcpus; i++) {
c = cpuarray_get(&allcpus, i);
spinlock_acquire(&c->c_runqueue_lock);
total_count += c->c_runqueue.tl_count;
@ -873,13 +823,13 @@ thread_consider_migration(void)
to_send = my_count - one_share;
threadlist_init(&victims);
spinlock_acquire(&curcpu->c_runqueue_lock);
for (i=0; i<to_send; i++) {
for (i = 0; i < to_send; i++) {
t = threadlist_remtail(&curcpu->c_runqueue);
threadlist_addhead(&victims, t);
}
spinlock_release(&curcpu->c_runqueue_lock);
for (i=0; i < numcpus && to_send > 0; i++) {
for (i = 0; i < numcpus && to_send > 0; i++) {
c = cpuarray_get(&allcpus, i);
if (c == curcpu->c_self) {
continue;
@ -917,9 +867,8 @@ thread_consider_migration(void)
t->t_cpu = c;
threadlist_addtail(&c->c_runqueue, t);
DEBUG(DB_THREADS,
"Migrated thread %s: cpu %u -> %u",
t->t_name, curcpu->c_number, c->c_number);
DEBUG(DB_THREADS, "Migrated thread %s: cpu %u -> %u", t->t_name,
curcpu->c_number, c->c_number);
to_send--;
if (c->c_isidle) {
/*
@ -963,9 +912,7 @@ thread_consider_migration(void)
* arrangements should be made to free it after the wait channel is
* destroyed.
*/
struct wchan *
wchan_create(const char *name)
{
struct wchan *wchan_create(const char *name) {
struct wchan *wc;
wc = kmalloc(sizeof(*wc));
@ -982,9 +929,7 @@ wchan_create(const char *name)
* Destroy a wait channel. Must be empty and unlocked.
* (The corresponding cleanup functions require this.)
*/
void
wchan_destroy(struct wchan *wc)
{
void wchan_destroy(struct wchan *wc) {
threadlist_cleanup(&wc->wc_threads);
kfree(wc);
}
@ -996,9 +941,7 @@ wchan_destroy(struct wchan *wc)
* be locked. The call to thread_switch unlocks it; we relock it
* before returning.
*/
void
wchan_sleep(struct wchan *wc, struct spinlock *lk)
{
void wchan_sleep(struct wchan *wc, struct spinlock *lk) {
/* may not sleep in an interrupt handler */
KASSERT(!curthread->t_in_interrupt);
@ -1015,9 +958,7 @@ wchan_sleep(struct wchan *wc, struct spinlock *lk)
/*
* Wake up one thread sleeping on a wait channel.
*/
void
wchan_wakeone(struct wchan *wc, struct spinlock *lk)
{
void wchan_wakeone(struct wchan *wc, struct spinlock *lk) {
struct thread *target;
KASSERT(spinlock_do_i_hold(lk));
@ -1044,9 +985,7 @@ wchan_wakeone(struct wchan *wc, struct spinlock *lk)
/*
* Wake up all threads sleeping on a wait channel.
*/
void
wchan_wakeall(struct wchan *wc, struct spinlock *lk)
{
void wchan_wakeall(struct wchan *wc, struct spinlock *lk) {
struct thread *target;
struct threadlist list;
@ -1078,9 +1017,7 @@ wchan_wakeall(struct wchan *wc, struct spinlock *lk)
* Return nonzero if there are no threads sleeping on the channel.
* This is meant to be used only for diagnostic purposes.
*/
bool
wchan_isempty(struct wchan *wc, struct spinlock *lk)
{
bool wchan_isempty(struct wchan *wc, struct spinlock *lk) {
bool ret;
KASSERT(spinlock_do_i_hold(lk));
@ -1098,9 +1035,7 @@ wchan_isempty(struct wchan *wc, struct spinlock *lk)
/*
* Send an IPI (inter-processor interrupt) to the specified CPU.
*/
void
ipi_send(struct cpu *target, int code)
{
void ipi_send(struct cpu *target, int code) {
KASSERT(code >= 0 && code < 32);
spinlock_acquire(&target->c_ipi_lock);
@ -1112,13 +1047,11 @@ ipi_send(struct cpu *target, int code)
/*
* Send an IPI to all CPUs.
*/
void
ipi_broadcast(int code)
{
void ipi_broadcast(int code) {
unsigned i;
struct cpu *c;
for (i=0; i < cpuarray_num(&allcpus); i++) {
for (i = 0; i < cpuarray_num(&allcpus); i++) {
c = cpuarray_get(&allcpus, i);
if (c != curcpu->c_self) {
ipi_send(c, code);
@ -1129,9 +1062,7 @@ ipi_broadcast(int code)
/*
* Send a TLB shootdown IPI to the specified CPU.
*/
void
ipi_tlbshootdown(struct cpu *target, const struct tlbshootdown *mapping)
{
void ipi_tlbshootdown(struct cpu *target, const struct tlbshootdown *mapping) {
unsigned n;
spinlock_acquire(&target->c_ipi_lock);
@ -1148,10 +1079,9 @@ ipi_tlbshootdown(struct cpu *target, const struct tlbshootdown *mapping)
* reduce the number of unnecessary shootdowns.
*/
panic("ipi_tlbshootdown: Too many shootdowns queued\n");
}
else {
} else {
target->c_shootdown[n] = *mapping;
target->c_numshootdown = n+1;
target->c_numshootdown = n + 1;
}
target->c_ipi_pending |= (uint32_t)1 << IPI_TLBSHOOTDOWN;
@ -1163,9 +1093,7 @@ ipi_tlbshootdown(struct cpu *target, const struct tlbshootdown *mapping)
/*
* Handle an incoming interprocessor interrupt.
*/
void
interprocessor_interrupt(void)
{
void interprocessor_interrupt(void) {
uint32_t bits;
unsigned i;
@ -1182,8 +1110,7 @@ interprocessor_interrupt(void)
spinlock_release(&curcpu->c_ipi_lock);
spinlock_acquire(&curcpu->c_runqueue_lock);
if (!curcpu->c_isidle) {
kprintf("cpu%d: offline: warning: not idle\n",
curcpu->c_number);
kprintf("cpu%d: offline: warning: not idle\n", curcpu->c_number);
}
spinlock_release(&curcpu->c_runqueue_lock);
kprintf("cpu%d: offline.\n", curcpu->c_number);
@ -1201,7 +1128,7 @@ interprocessor_interrupt(void)
* need to release the ipi lock while calling
* vm_tlbshootdown.
*/
for (i=0; i<curcpu->c_numshootdown; i++) {
for (i = 0; i < curcpu->c_numshootdown; i++) {
vm_tlbshootdown(&curcpu->c_shootdown[i]);
}
curcpu->c_numshootdown = 0;

View File

@ -36,18 +36,14 @@
* Kernel malloc.
*/
/*
* Fill a block with 0xdeadbeef.
*/
static
void
fill_deadbeef(void *vptr, size_t len)
{
static void fill_deadbeef(void *vptr, size_t len) {
uint32_t *ptr = vptr;
size_t i;
for (i=0; i<len/sizeof(uint32_t); i++) {
for (i = 0; i < len / sizeof(uint32_t); i++) {
ptr[i] = 0xdeadbeef;
}
}
@ -126,7 +122,7 @@ fill_deadbeef(void *vptr, size_t len)
#if PAGE_SIZE == 4096
#define NSIZES 8
static const size_t sizes[NSIZES] = { 16, 32, 64, 128, 256, 512, 1024, 2048 };
static const size_t sizes[NSIZES] = {16, 32, 64, 128, 256, 512, 1024, 2048};
#define SMALLEST_SUBPAGE_SIZE 16
#define LARGEST_SUBPAGE_SIZE 2048
@ -155,7 +151,7 @@ struct pageref {
#define PR_PAGEADDR(pr) ((pr)->pageaddr_and_blocktype & PAGE_FRAME)
#define PR_BLOCKTYPE(pr) ((pr)->pageaddr_and_blocktype & ~PAGE_FRAME)
#define MKPAB(pa, blk) (((pa)&PAGE_FRAME) | ((blk) & ~PAGE_FRAME))
#define MKPAB(pa, blk) (((pa) & PAGE_FRAME) | ((blk) & ~PAGE_FRAME))
////////////////////////////////////////
@ -215,10 +211,7 @@ static struct kheap_root kheaproots[NUM_PAGEREFPAGES];
/*
* Allocate a page to hold pagerefs.
*/
static
void
allocpagerefpage(struct kheap_root *root)
{
static void allocpagerefpage(struct kheap_root *root) {
vaddr_t va;
KASSERT(root->page == NULL);
@ -253,16 +246,13 @@ allocpagerefpage(struct kheap_root *root)
/*
* Allocate a pageref structure.
*/
static
struct pageref *
allocpageref(void)
{
unsigned i,j;
static struct pageref *allocpageref(void) {
unsigned i, j;
uint32_t k;
unsigned whichroot;
struct kheap_root *root;
for (whichroot=0; whichroot < NUM_PAGEREFPAGES; whichroot++) {
for (whichroot = 0; whichroot < NUM_PAGEREFPAGES; whichroot++) {
root = &kheaproots[whichroot];
if (root->numinuse >= NPAGEREFS_PER_PAGE) {
continue;
@ -271,13 +261,13 @@ allocpageref(void)
/*
* This should probably not be a linear search.
*/
for (i=0; i<INUSE_WORDS; i++) {
if (root->pagerefs_inuse[i]==0xffffffff) {
for (i = 0; i < INUSE_WORDS; i++) {
if (root->pagerefs_inuse[i] == 0xffffffff) {
/* full */
continue;
}
for (k=1,j=0; k!=0; k<<=1,j++) {
if ((root->pagerefs_inuse[i] & k)==0) {
for (k = 1, j = 0; k != 0; k <<= 1, j++) {
if ((root->pagerefs_inuse[i] & k) == 0) {
root->pagerefs_inuse[i] |= k;
root->numinuse++;
if (root->page == NULL) {
@ -286,7 +276,7 @@ allocpageref(void)
if (root->page == NULL) {
return NULL;
}
return &root->page->refs[i*32 + j];
return &root->page->refs[i * 32 + j];
}
}
KASSERT(0);
@ -300,17 +290,14 @@ allocpageref(void)
/*
* Release a pageref structure.
*/
static
void
freepageref(struct pageref *p)
{
static void freepageref(struct pageref *p) {
size_t i, j;
uint32_t k;
unsigned whichroot;
struct kheap_root *root;
struct pagerefpage *page;
for (whichroot=0; whichroot < NUM_PAGEREFPAGES; whichroot++) {
for (whichroot = 0; whichroot < NUM_PAGEREFPAGES; whichroot++) {
root = &kheaproots[whichroot];
page = root->page;
@ -319,12 +306,12 @@ freepageref(struct pageref *p)
continue;
}
j = p-page->refs;
j = p - page->refs;
/* note: j is unsigned, don't test < 0 */
if (j < NPAGEREFS_PER_PAGE) {
/* on this page */
i = j/32;
k = ((uint32_t)1) << (j%32);
i = j / 32;
k = ((uint32_t)1) << (j % 32);
KASSERT((root->pagerefs_inuse[i] & k) != 0);
root->pagerefs_inuse[i] &= ~k;
KASSERT(root->numinuse > 0);
@ -365,10 +352,8 @@ static struct pageref *allbase;
/*
* Set up the guard values in a block we're about to return.
*/
static
void *
establishguardband(void *block, size_t clientsize, size_t blocksize)
{
static void *establishguardband(void *block, size_t clientsize,
size_t blocksize) {
vaddr_t lowguard, lowsize, data, enddata, highguard, highsize, i;
KASSERT(clientsize + GUARD_OVERHEAD <= blocksize);
@ -383,10 +368,10 @@ establishguardband(void *block, size_t clientsize, size_t blocksize)
*(uint16_t *)lowguard = GUARD_HALFWORD;
*(uint16_t *)lowsize = clientsize;
for (i=data; i<enddata; i++) {
for (i = data; i < enddata; i++) {
*(uint8_t *)i = GUARD_RETBYTE;
}
for (i=enddata; i<highguard; i++) {
for (i = enddata; i < highguard; i++) {
*(uint8_t *)i = GUARD_FILLBYTE;
}
*(uint16_t *)highguard = GUARD_HALFWORD;
@ -398,10 +383,8 @@ establishguardband(void *block, size_t clientsize, size_t blocksize)
/*
* Validate the guard values in an existing block.
*/
static
void
checkguardband(vaddr_t blockaddr, size_t smallerblocksize, size_t blocksize)
{
static void checkguardband(vaddr_t blockaddr, size_t smallerblocksize,
size_t blocksize) {
/*
* The first two bytes of the block are the lower guard band.
* The next two bytes are the real size (the size of the
@ -430,7 +413,7 @@ checkguardband(vaddr_t blockaddr, size_t smallerblocksize, size_t blocksize)
KASSERT(clientsize + GUARD_OVERHEAD > smallerblocksize);
KASSERT(clientsize + GUARD_OVERHEAD <= blocksize);
enddata = data + clientsize;
for (i=enddata; i<highguard; i++) {
for (i = enddata; i < highguard; i++) {
KASSERT(*(uint8_t *)i == GUARD_FILLBYTE);
}
}
@ -457,14 +440,11 @@ checkguardband(vaddr_t blockaddr, size_t smallerblocksize, size_t blocksize)
* The first word of the block is a freelist pointer and should not be
* deadbeef; the rest of the block should be only deadbeef.
*/
static
void
checkdeadbeef(void *block, size_t blocksize)
{
static void checkdeadbeef(void *block, size_t blocksize) {
uint32_t *ptr = block;
size_t i;
for (i=1; i < blocksize/sizeof(uint32_t); i++) {
for (i = 1; i < blocksize / sizeof(uint32_t); i++) {
KASSERT(ptr[i] == 0xdeadbeef);
}
}
@ -490,14 +470,11 @@ checkdeadbeef(void *block, size_t blocksize)
* assertion as a bit in isfree is set twice; if not, a circular
* freelist will cause an infinite loop.
*/
static
void
checksubpage(struct pageref *pr)
{
static void checksubpage(struct pageref *pr) {
vaddr_t prpage, fla;
struct freelist *fl;
int blktype;
int nfree=0;
int nfree = 0;
size_t blocksize;
#ifdef CHECKGUARDS
const unsigned maxblocks = PAGE_SIZE / SMALLEST_SUBPAGE_SIZE;
@ -510,7 +487,7 @@ checksubpage(struct pageref *pr)
KASSERT(spinlock_do_i_hold(&kmalloc_spinlock));
if (pr->freelist_offset == INVALID_OFFSET) {
KASSERT(pr->nfree==0);
KASSERT(pr->nfree == 0);
return;
}
@ -521,7 +498,7 @@ checksubpage(struct pageref *pr)
#ifdef CHECKGUARDS
smallerblocksize = blktype > 0 ? sizes[blktype - 1] : 0;
for (i=0; i<numfreewords; i++) {
for (i = 0; i < numfreewords; i++) {
isfree[i] = 0;
}
#endif
@ -540,12 +517,12 @@ checksubpage(struct pageref *pr)
for (; fl != NULL; fl = fl->next) {
fla = (vaddr_t)fl;
KASSERT(fla >= prpage && fla < prpage + PAGE_SIZE);
KASSERT((fla-prpage) % blocksize == 0);
KASSERT((fla - prpage) % blocksize == 0);
#ifdef CHECKBEEF
checkdeadbeef(fl, blocksize);
#endif
#ifdef CHECKGUARDS
blocknum = (fla-prpage) / blocksize;
blocknum = (fla - prpage) / blocksize;
mask = 1U << (blocknum % 32);
KASSERT((isfree[blocknum / 32] & mask) == 0);
isfree[blocknum / 32] |= mask;
@ -553,15 +530,14 @@ checksubpage(struct pageref *pr)
KASSERT(fl->next != fl);
nfree++;
}
KASSERT(nfree==pr->nfree);
KASSERT(nfree == pr->nfree);
#ifdef CHECKGUARDS
numblocks = PAGE_SIZE / blocksize;
for (i=0; i<numblocks; i++) {
for (i = 0; i < numblocks; i++) {
mask = 1U << (i % 32);
if ((isfree[i / 32] & mask) == 0) {
checkguardband(prpage + i * blocksize,
smallerblocksize, blocksize);
checkguardband(prpage + i * blocksize, smallerblocksize, blocksize);
}
}
#endif
@ -575,17 +551,14 @@ checksubpage(struct pageref *pr)
* Run checksubpage on all heap pages. This also checks that the
* linked lists of pagerefs are more or less intact.
*/
static
void
checksubpages(void)
{
static void checksubpages(void) {
struct pageref *pr;
int i;
unsigned sc=0, ac=0;
unsigned sc = 0, ac = 0;
KASSERT(spinlock_do_i_hold(&kmalloc_spinlock));
for (i=0; i<NSIZES; i++) {
for (i = 0; i < NSIZES; i++) {
for (pr = sizebases[i]; pr != NULL; pr = pr->next_samesize) {
checksubpage(pr);
KASSERT(sc < TOTAL_PAGEREFS);
@ -599,7 +572,7 @@ checksubpages(void)
ac++;
}
KASSERT(sc==ac);
KASSERT(sc == ac);
}
#else
#define checksubpages()
@ -622,10 +595,7 @@ static unsigned mallocgeneration;
/*
* Label a block of memory.
*/
static
void *
establishlabel(void *block, vaddr_t label)
{
static void *establishlabel(void *block, vaddr_t label) {
struct malloclabel *ml;
ml = block;
@ -635,10 +605,7 @@ establishlabel(void *block, vaddr_t label)
return ml;
}
static
void
dump_subpage(struct pageref *pr, unsigned generation)
{
static void dump_subpage(struct pageref *pr, unsigned generation) {
unsigned blocksize = sizes[PR_BLOCKTYPE(pr)];
unsigned numblocks = PAGE_SIZE / blocksize;
unsigned numfreewords = DIVROUNDUP(numblocks, 32);
@ -649,7 +616,7 @@ dump_subpage(struct pageref *pr, unsigned generation)
struct malloclabel *ml;
unsigned i;
for (i=0; i<numfreewords; i++) {
for (i = 0; i < numfreewords; i++) {
isfree[i] = 0;
}
@ -661,7 +628,7 @@ dump_subpage(struct pageref *pr, unsigned generation)
isfree[i / 32] |= mask;
}
for (i=0; i<numblocks; i++) {
for (i = 0; i < numblocks; i++) {
mask = 1U << (i % 32);
if (isfree[i / 32] & mask) {
continue;
@ -671,20 +638,17 @@ dump_subpage(struct pageref *pr, unsigned generation)
if (ml->generation != generation) {
continue;
}
kprintf("%5zu bytes at %p, allocated at %p\n",
blocksize, (void *)blockaddr, (void *)ml->label);
kprintf("%5zu bytes at %p, allocated at %p\n", blocksize, (void *)blockaddr,
(void *)ml->label);
}
}
static
void
dump_subpages(unsigned generation)
{
static void dump_subpages(unsigned generation) {
struct pageref *pr;
int i;
kprintf("Remaining allocations from generation %u:\n", generation);
for (i=0; i<NSIZES; i++) {
for (i = 0; i < NSIZES; i++) {
for (pr = sizebases[i]; pr != NULL; pr = pr->next_samesize) {
dump_subpage(pr, generation);
}
@ -697,9 +661,7 @@ dump_subpages(unsigned generation)
#endif /* LABELS */
void
kheap_nextgeneration(void)
{
void kheap_nextgeneration(void) {
#ifdef LABELS
spinlock_acquire(&kmalloc_spinlock);
mallocgeneration++;
@ -707,9 +669,7 @@ kheap_nextgeneration(void)
#endif
}
void
kheap_dump(void)
{
void kheap_dump(void) {
#ifdef LABELS
/* print the whole thing with interrupts off */
spinlock_acquire(&kmalloc_spinlock);
@ -720,15 +680,13 @@ kheap_dump(void)
#endif
}
void
kheap_dumpall(void)
{
void kheap_dumpall(void) {
#ifdef LABELS
unsigned i;
/* print the whole thing with interrupts off */
spinlock_acquire(&kmalloc_spinlock);
for (i=0; i<=mallocgeneration; i++) {
for (i = 0; i <= mallocgeneration; i++) {
dump_subpages(i);
}
spinlock_release(&kmalloc_spinlock);
@ -742,21 +700,18 @@ kheap_dumpall(void)
/*
* Print the allocated/freed map of a single kernel heap page.
*/
static
void
subpage_stats(struct pageref *pr)
{
static void subpage_stats(struct pageref *pr) {
vaddr_t prpage, fla;
struct freelist *fl;
int blktype;
unsigned i, n, index;
uint32_t freemap[PAGE_SIZE / (SMALLEST_SUBPAGE_SIZE*32)];
uint32_t freemap[PAGE_SIZE / (SMALLEST_SUBPAGE_SIZE * 32)];
checksubpage(pr);
KASSERT(spinlock_do_i_hold(&kmalloc_spinlock));
/* clear freemap[] */
for (i=0; i<ARRAYCOUNT(freemap); i++) {
for (i = 0; i < ARRAYCOUNT(freemap); i++) {
freemap[i] = 0;
}
@ -774,20 +729,19 @@ subpage_stats(struct pageref *pr)
for (; fl != NULL; fl = fl->next) {
fla = (vaddr_t)fl;
index = (fla-prpage) / sizes[blktype];
KASSERT(index<n);
freemap[index/32] |= (1<<(index%32));
index = (fla - prpage) / sizes[blktype];
KASSERT(index < n);
freemap[index / 32] |= (1 << (index % 32));
}
}
kprintf("at 0x%08lx: size %-4lu %u/%u free\n",
(unsigned long)prpage, (unsigned long) sizes[blktype],
(unsigned) pr->nfree, n);
kprintf("at 0x%08lx: size %-4lu %u/%u free\n", (unsigned long)prpage,
(unsigned long)sizes[blktype], (unsigned)pr->nfree, n);
kprintf(" ");
for (i=0; i<n; i++) {
int val = (freemap[i/32] & (1<<(i%32)))!=0;
for (i = 0; i < n; i++) {
int val = (freemap[i / 32] & (1 << (i % 32))) != 0;
kprintf("%c", val ? '.' : '*');
if (i%64==63 && i<n-1) {
if (i % 64 == 63 && i < n - 1) {
kprintf("\n ");
}
}
@ -797,9 +751,7 @@ subpage_stats(struct pageref *pr)
/*
* Print the whole heap.
*/
void
kheap_printstats(void)
{
void kheap_printstats(void) {
struct pageref *pr;
/* print the whole thing with interrupts off */
@ -819,13 +771,10 @@ kheap_printstats(void)
/*
* Remove a pageref from both lists that it's on.
*/
static
void
remove_lists(struct pageref *pr, int blktype)
{
static void remove_lists(struct pageref *pr, int blktype) {
struct pageref **guy;
KASSERT(blktype>=0 && blktype<NSIZES);
KASSERT(blktype >= 0 && blktype < NSIZES);
for (guy = &sizebases[blktype]; *guy; guy = &(*guy)->next_samesize) {
checksubpage(*guy);
@ -848,19 +797,15 @@ remove_lists(struct pageref *pr, int blktype)
* Given a requested client size, return the block type, that is, the
* index into the sizes[] array for the block size to use.
*/
static
inline
int blocktype(size_t clientsz)
{
static inline int blocktype(size_t clientsz) {
unsigned i;
for (i=0; i<NSIZES; i++) {
for (i = 0; i < NSIZES; i++) {
if (clientsz <= sizes[i]) {
return i;
}
}
panic("Subpage allocator cannot handle allocation of size %zu\n",
clientsz);
panic("Subpage allocator cannot handle allocation of size %zu\n", clientsz);
// keep compiler happy
return 0;
@ -870,14 +815,12 @@ int blocktype(size_t clientsz)
* Allocate a block of size SZ, where SZ is not large enough to
* warrant a whole-page allocation.
*/
static
void *
subpage_kmalloc(size_t sz
static void *subpage_kmalloc(size_t sz
#ifdef LABELS
, vaddr_t label
,
vaddr_t label
#endif
)
{
) {
unsigned blktype; // index into sizes[] that we're using
struct pageref *pr; // pageref for page we're allocating from
vaddr_t prpage; // PR_PAGEADDR(pr)
@ -935,8 +878,7 @@ subpage_kmalloc(size_t sz
fla = (vaddr_t)fl;
KASSERT(fla - prpage < PAGE_SIZE);
pr->freelist_offset = fla - prpage;
}
else {
} else {
KASSERT(pr->nfree == 0);
pr->freelist_offset = INVALID_OFFSET;
}
@ -965,7 +907,7 @@ subpage_kmalloc(size_t sz
spinlock_release(&kmalloc_spinlock);
prpage = alloc_kpages(1);
if (prpage==0) {
if (prpage == 0) {
/* Out of memory. */
kprintf("kmalloc: Subpage allocator couldn't get a page\n");
return NULL;
@ -978,7 +920,7 @@ subpage_kmalloc(size_t sz
spinlock_acquire(&kmalloc_spinlock);
pr = allocpageref();
if (pr==NULL) {
if (pr == NULL) {
/* Couldn't allocate accounting space for the new page. */
spinlock_release(&kmalloc_spinlock);
free_kpages(prpage);
@ -998,14 +940,14 @@ subpage_kmalloc(size_t sz
fla = prpage;
fl = (struct freelist *)fla;
fl->next = NULL;
for (i=1; i<pr->nfree; i++) {
fl = (struct freelist *)(fla + i*sizes[blktype]);
fl->next = (struct freelist *)(fla + (i-1)*sizes[blktype]);
for (i = 1; i < pr->nfree; i++) {
fl = (struct freelist *)(fla + i * sizes[blktype]);
fl->next = (struct freelist *)(fla + (i - 1) * sizes[blktype]);
KASSERT(fl != fl->next);
}
fla = (vaddr_t) fl;
fla = (vaddr_t)fl;
pr->freelist_offset = fla - prpage;
KASSERT(pr->freelist_offset == (pr->nfree-1)*sizes[blktype]);
KASSERT(pr->freelist_offset == (pr->nfree - 1) * sizes[blktype]);
pr->next_samesize = sizebases[blktype];
sizebases[blktype] = pr;
@ -1021,10 +963,7 @@ subpage_kmalloc(size_t sz
* Free a pointer previously returned from subpage_kmalloc. If the
* pointer is not on any heap page we recognize, return -1.
*/
static
int
subpage_kfree(void *ptr)
{
static int subpage_kfree(void *ptr) {
int blktype; // index into sizes[] that we're using
vaddr_t ptraddr; // same as ptr
struct pageref *pr; // pageref for page we're freeing in
@ -1075,7 +1014,7 @@ subpage_kfree(void *ptr)
KASSERT(blktype >= 0 && blktype < NSIZES);
/* check for corruption */
KASSERT(blktype>=0 && blktype<NSIZES);
KASSERT(blktype >= 0 && blktype < NSIZES);
checksubpage(pr);
if (ptraddr >= prpage && ptraddr < prpage + PAGE_SIZE) {
@ -1083,7 +1022,7 @@ subpage_kfree(void *ptr)
}
}
if (pr==NULL) {
if (pr == NULL) {
/* Not on any of our pages - not a subpage allocation */
spinlock_release(&kmalloc_spinlock);
return -1;
@ -1145,8 +1084,7 @@ subpage_kfree(void *ptr)
/* Call free_kpages without kmalloc_spinlock. */
spinlock_release(&kmalloc_spinlock);
free_kpages(prpage);
}
else {
} else {
spinlock_release(&kmalloc_spinlock);
}
@ -1166,9 +1104,7 @@ subpage_kfree(void *ptr)
* Allocate a block of size SZ. Redirect either to subpage_kmalloc or
* alloc_kpages depending on how big SZ is.
*/
void *
kmalloc(size_t sz)
{
void *kmalloc(size_t sz) {
size_t checksz;
#ifdef LABELS
vaddr_t label;
@ -1188,9 +1124,9 @@ kmalloc(size_t sz)
vaddr_t address;
/* Round up to a whole number of pages. */
npages = (sz + PAGE_SIZE - 1)/PAGE_SIZE;
npages = (sz + PAGE_SIZE - 1) / PAGE_SIZE;
address = alloc_kpages(npages);
if (address==0) {
if (address == 0) {
return NULL;
}
KASSERT(address % PAGE_SIZE == 0);
@ -1208,17 +1144,14 @@ kmalloc(size_t sz)
/*
* Free a block previously returned from kmalloc.
*/
void
kfree(void *ptr)
{
void kfree(void *ptr) {
/*
* Try subpage first; if that fails, assume it's a big allocation.
*/
if (ptr == NULL) {
return;
} else if (subpage_kfree(ptr)) {
KASSERT((vaddr_t)ptr%PAGE_SIZE==0);
KASSERT((vaddr_t)ptr % PAGE_SIZE == 0);
free_kpages((vaddr_t)ptr);
}
}