Merging in 2.0.2.

This commit is contained in:
Geoffrey Challen
2017-01-09 22:37:50 -05:00
parent a0406ec181
commit 50cf3276e7
118 changed files with 1350 additions and 3158 deletions

View File

@@ -33,19 +33,13 @@
#include <types.h>
#include <kern/errno.h>
#include <lib.h>
#include <cpu.h>
#include <thread.h>
#include <synch.h>
#include <vm.h> /* for PAGE_SIZE */
#include <test.h>
#include <kern/test161.h>
#include <mainbus.h>
#include "opt-dumbvm.h"
// from arch/mips/vm/ram.c
extern vaddr_t firstfree;
////////////////////////////////////////////////////////////
// km1/km2
@@ -64,12 +58,6 @@ extern vaddr_t firstfree;
#define ITEMSIZE 997
#define NTHREADS 8
#define PROGRESS(iter) do { \
if ((iter % 100) == 0) { \
kprintf("."); \
} \
} while (0)
static
void
kmallocthread(void *sm, unsigned long num)
@@ -81,16 +69,15 @@ kmallocthread(void *sm, unsigned long num)
int i;
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
ptr = kmalloc(ITEMSIZE);
if (ptr==NULL) {
if (sem) {
kprintf("thread %lu: kmalloc returned NULL\n",
num);
panic("kmalloc test failed");
goto done;
}
kprintf("kmalloc returned null; test failed.\n");
panic("kmalloc test failed");
goto done;
}
if (oldptr2) {
kfree(oldptr2);
@@ -98,7 +85,7 @@ kmallocthread(void *sm, unsigned long num)
oldptr2 = oldptr;
oldptr = ptr;
}
done:
if (oldptr2) {
kfree(oldptr2);
}
@@ -118,8 +105,7 @@ kmalloctest(int nargs, char **args)
kprintf("Starting kmalloc test...\n");
kmallocthread(NULL, 0);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km1");
kprintf("kmalloc test done\n");
return 0;
}
@@ -154,8 +140,7 @@ kmallocstress(int nargs, char **args)
}
sem_destroy(sem);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km2");
kprintf("kmalloc stress test done\n");
return 0;
}
@@ -267,7 +252,6 @@ kmalloctest3(int nargs, char **args)
curpos = 0;
cursizeindex = 0;
for (i=0; i<numptrs; i++) {
PROGRESS(i);
cursize = sizes[cursizeindex];
ptr = ptrblocks[curblock][curpos];
KASSERT(ptr != NULL);
@@ -298,15 +282,13 @@ kmalloctest3(int nargs, char **args)
/* Free the lower tier. */
for (i=0; i<numptrblocks; i++) {
PROGRESS(i);
KASSERT(ptrblocks[i] != NULL);
kfree(ptrblocks[i]);
}
/* Free the upper tier. */
kfree(ptrblocks);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km3");
kprintf("kmalloctest3: passed\n");
return 0;
}
@@ -318,24 +300,20 @@ void
kmalloctest4thread(void *sm, unsigned long num)
{
#define NUM_KM4_SIZES 5
#define ITERATIONS 50
static const unsigned sizes[NUM_KM4_SIZES] = { 1, 3, 5, 2, 4 };
struct semaphore *sem = sm;
void *ptrs[NUM_KM4_SIZES];
unsigned p, q;
unsigned i, j, k;
uint32_t magic;
unsigned i;
for (i=0; i<NUM_KM4_SIZES; i++) {
ptrs[i] = NULL;
}
p = 0;
q = NUM_KM4_SIZES / 2;
magic = random();
for (i=0; i<NTRIES; i++) {
PROGRESS(i);
if (ptrs[q] != NULL) {
kfree(ptrs[q]);
ptrs[q] = NULL;
@@ -346,24 +324,6 @@ kmalloctest4thread(void *sm, unsigned long num)
"allocating %u pages failed\n",
num, sizes[p]);
}
// Write to each page of the allocated memory and make sure nothing
// overwrites it.
for (k = 0; k < sizes[p]; k++) {
*((uint32_t *)ptrs[p] + k*PAGE_SIZE/sizeof(uint32_t)) = magic;
}
for (j = 0; j < ITERATIONS; j++) {
random_yielder(4);
for (k = 0; k < sizes[p]; k++) {
uint32_t actual = *((uint32_t *)ptrs[p] + k*PAGE_SIZE/sizeof(uint32_t));
if (actual != magic) {
panic("km4: expected %u got %u. Your VM is broken!",
magic, actual);
}
}
}
magic++;
p = (p + 1) % NUM_KM4_SIZES;
q = (q + 1) % NUM_KM4_SIZES;
}
@@ -415,193 +375,6 @@ kmalloctest4(int nargs, char **args)
}
sem_destroy(sem);
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km4");
return 0;
}
static inline
void
km5_usage()
{
kprintf("usage: km5 [--avail <num_pages>] [--kernel <num_pages>]\n");
}
/*
* Allocate and free all physical memory a number of times. Along the we, we
* check coremap_used_bytes to make sure it's reporting the number we're
* expecting.
*/
int
kmalloctest5(int nargs, char **args)
{
#define KM5_ITERATIONS 5
// We're expecting an even number of arguments, less arg[0].
if (nargs > 5 || (nargs % 2) == 0) {
km5_usage();
return 0;
}
unsigned avail_page_slack = 0, kernel_page_limit = 0;
int arg = 1;
while (arg < nargs) {
if (strcmp(args[arg], "--avail") == 0) {
arg++;
avail_page_slack = atoi(args[arg++]);
} else if (strcmp(args[arg], "--kernel") == 0) {
arg++;
kernel_page_limit = atoi(args[arg++]);
} else {
km5_usage();
return 0;
}
}
#if OPT_DUMBVM
kprintf("(This test will not work with dumbvm)\n");
#endif
// First, we need to figure out how much memory we're running with and how
// much space it will take up if we maintain a pointer to each allocated
// page. We do something similar to km3 - for 32 bit systems with
// PAGE_SIZE == 4096, we can store 1024 pointers on a page. We keep an array
// of page size blocks of pointers which in total can hold enough pointers
// for each page of available physical memory.
unsigned orig_used, ptrs_per_page, num_ptr_blocks, max_pages;
unsigned total_ram, avail_ram, magic, orig_magic, known_pages;
ptrs_per_page = PAGE_SIZE / sizeof(void *);
total_ram = mainbus_ramsize();
avail_ram = total_ram - (uint32_t)(firstfree - MIPS_KSEG0);
max_pages = (avail_ram + PAGE_SIZE-1) / PAGE_SIZE;
num_ptr_blocks = (max_pages + ptrs_per_page-1) / ptrs_per_page;
// The array can go on the stack, we won't have that many
// (sys161 16M max => 4 blocks)
void **ptrs[num_ptr_blocks];
for (unsigned i = 0; i < num_ptr_blocks; i++) {
ptrs[i] = kmalloc(PAGE_SIZE);
if (ptrs[i] == NULL) {
panic("Can't allocate ptr page!");
}
bzero(ptrs[i], PAGE_SIZE);
}
kprintf("km5 --> phys ram: %uk avail ram: %uk (%u pages) ptr blocks: %u\n", total_ram/1024,
avail_ram/1024, max_pages, num_ptr_blocks);
// Initially, there must be at least 1 page allocated for each thread stack,
// one page for kmalloc for this thread struct, plus what we just allocated).
// This probably isn't the GLB, but its a decent lower bound.
orig_used = coremap_used_bytes();
known_pages = num_cpus + num_ptr_blocks + 1;
if (orig_used < known_pages * PAGE_SIZE) {
panic ("Not enough pages initially allocated");
}
if ((orig_used % PAGE_SIZE) != 0) {
panic("Coremap used bytes should be a multiple of PAGE_SIZE");
}
// Test for kernel bloat.
if (kernel_page_limit > 0) {
uint32_t kpages = (total_ram - avail_ram + PAGE_SIZE) / PAGE_SIZE;
if (kpages > kernel_page_limit) {
panic("You're kernel is bloated! Max allowed pages: %d, used pages: %d",
kernel_page_limit, kpages);
}
}
orig_magic = magic = random();
for (int i = 0; i < KM5_ITERATIONS; i++) {
// Step 1: allocate all physical memory, with checks along the way
unsigned int block, pos, oom, pages, used, prev;
void *page;
block = pos = oom = pages = used = 0;
prev = orig_used;
while (pages < max_pages+1) {
PROGRESS(pages);
page = kmalloc(PAGE_SIZE);
if (page == NULL) {
oom = 1;
break;
}
// Make sure we can write to the page
*(uint32_t *)page = magic++;
// Make sure the number of used bytes is going up, and by increments of PAGE_SIZE
used = coremap_used_bytes();
if (used != prev + PAGE_SIZE) {
panic("Allocation not equal to PAGE_SIZE. prev: %u used: %u", prev, used);
}
prev = used;
ptrs[block][pos] = page;
pos++;
if (pos >= ptrs_per_page) {
pos = 0;
block++;
}
pages++;
}
// Step 2: Check that we were able to allocate a reasonable number of pages
unsigned expected;
if (avail_page_slack > 0 ) {
// max avail pages + what we can prove we allocated + some slack
expected = max_pages - (known_pages + avail_page_slack);
} else {
// At the very least, just so we know things are working.
expected = 3;
}
if (pages < expected) {
panic("Expected to allocate at least %d pages, only allocated %d",
expected, pages);
}
// We tried to allocate 1 more page than is available in physical memory. That
// should fail unless you're swapping out kernel pages, which you should
// probably not be doing.
if (!oom) {
panic("Allocated more pages than physical memory. Are you swapping kernel pages?");
}
// Step 3: free everything and check that we're back to where we started
for (block = 0; block < num_ptr_blocks; block++) {
for (pos = 0; pos < ptrs_per_page; pos++) {
if (ptrs[block][pos] != NULL) {
// Make sure we got unique addresses
if ((*(uint32_t *)ptrs[block][pos]) != orig_magic++) {
panic("km5: expected %u got %u - your VM is broken!",
orig_magic-1, (*(uint32_t *)ptrs[block][pos]));
}
kfree(ptrs[block][pos]);
}
}
}
// Check that we're back to where we started
used = coremap_used_bytes();
if (used != orig_used) {
panic("orig (%u) != used (%u)", orig_used, used);
}
}
//Clean up the pointer blocks
for (unsigned i = 0; i < num_ptr_blocks; i++) {
kfree(ptrs[i]);
}
kprintf("\n");
success(TEST161_SUCCESS, SECRET, "km5");
kprintf("Multipage kmalloc test done\n");
return 0;
}

View File

@@ -29,9 +29,6 @@
/*
* Synchronization test code.
*
* All the contents of this file are overwritten during automated
* testing. Please consider this before changing anything in this file.
*/
#include <types.h>
@@ -40,303 +37,185 @@
#include <thread.h>
#include <synch.h>
#include <test.h>
#include <kern/test161.h>
#include <spinlock.h>
#define CREATELOOPS 8
#define NSEMLOOPS 63
#define NLOCKLOOPS 120
#define NCVLOOPS 5
#define NTHREADS 32
#define SYNCHTEST_YIELDER_MAX 16
static volatile unsigned long testval1;
static volatile unsigned long testval2;
static volatile unsigned long testval3;
static volatile int32_t testval4;
static struct semaphore *testsem = NULL;
static struct semaphore *testsem2 = NULL;
static struct lock *testlock = NULL;
static struct lock *testlock2 = NULL;
static struct cv *testcv = NULL;
static struct semaphore *donesem = NULL;
struct spinlock status_lock;
static bool test_status = TEST161_FAIL;
static unsigned long semtest_current;
static struct semaphore *testsem;
static struct lock *testlock;
static struct cv *testcv;
static struct semaphore *donesem;
static
bool
failif(bool condition) {
if (condition) {
spinlock_acquire(&status_lock);
test_status = TEST161_FAIL;
spinlock_release(&status_lock);
void
inititems(void)
{
if (testsem==NULL) {
testsem = sem_create("testsem", 2);
if (testsem == NULL) {
panic("synchtest: sem_create failed\n");
}
}
if (testlock==NULL) {
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("synchtest: lock_create failed\n");
}
}
if (testcv==NULL) {
testcv = cv_create("testlock");
if (testcv == NULL) {
panic("synchtest: cv_create failed\n");
}
}
if (donesem==NULL) {
donesem = sem_create("donesem", 0);
if (donesem == NULL) {
panic("synchtest: sem_create failed\n");
}
}
return condition;
}
static
void
semtestthread(void *junk, unsigned long num)
{
(void)junk;
int i;
random_yielder(4);
(void)junk;
/*
* Only one of these should print at a time.
*/
P(testsem);
semtest_current = num;
kprintf_n("Thread %2lu: ", num);
kprintf("Thread %2lu: ", num);
for (i=0; i<NSEMLOOPS; i++) {
kprintf_t(".");
kprintf_n("%2lu", num);
random_yielder(4);
failif((semtest_current != num));
kprintf("%c", (int)num+64);
}
kprintf_n("\n");
kprintf("\n");
V(donesem);
}
int
semtest(int nargs, char **args)
{
int i, result;
(void)nargs;
(void)args;
int i, result;
kprintf_n("Starting sem1...\n");
for (i=0; i<CREATELOOPS; i++) {
kprintf_t(".");
testsem = sem_create("testsem", 2);
if (testsem == NULL) {
panic("sem1: sem_create failed\n");
}
donesem = sem_create("donesem", 0);
if (donesem == NULL) {
panic("sem1: sem_create failed\n");
}
if (i != CREATELOOPS - 1) {
sem_destroy(testsem);
sem_destroy(donesem);
}
}
spinlock_init(&status_lock);
test_status = TEST161_SUCCESS;
kprintf_n("If this hangs, it's broken: ");
inititems();
kprintf("Starting semaphore test...\n");
kprintf("If this hangs, it's broken: ");
P(testsem);
P(testsem);
kprintf_n("OK\n");
kprintf_t(".");
kprintf("ok\n");
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
result = thread_fork("semtest", NULL, semtestthread, NULL, i);
if (result) {
panic("sem1: thread_fork failed: %s\n",
panic("semtest: thread_fork failed: %s\n",
strerror(result));
}
}
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
V(testsem);
P(donesem);
}
sem_destroy(testsem);
sem_destroy(donesem);
testsem = donesem = NULL;
kprintf_t("\n");
success(test_status, SECRET, "sem1");
/* so we can run it again */
V(testsem);
V(testsem);
kprintf("Semaphore test done.\n");
return 0;
}
static
void
fail(unsigned long num, const char *msg)
{
kprintf("thread %lu: Mismatch on %s\n", num, msg);
kprintf("Test failed\n");
lock_release(testlock);
V(donesem);
thread_exit();
}
static
void
locktestthread(void *junk, unsigned long num)
{
int i;
(void)junk;
int i;
for (i=0; i<NLOCKLOOPS; i++) {
kprintf_t(".");
lock_acquire(testlock);
random_yielder(4);
testval1 = num;
testval2 = num*num;
testval3 = num%3;
if (testval2 != testval1*testval1) {
goto fail;
fail(num, "testval2/testval1");
}
random_yielder(4);
if (testval2%3 != (testval3*testval3)%3) {
goto fail;
fail(num, "testval2/testval3");
}
random_yielder(4);
if (testval3 != testval1%3) {
goto fail;
fail(num, "testval3/testval1");
}
random_yielder(4);
if (testval1 != num) {
goto fail;
fail(num, "testval1/num");
}
random_yielder(4);
if (testval2 != num*num) {
goto fail;
fail(num, "testval2/num");
}
random_yielder(4);
if (testval3 != num%3) {
goto fail;
fail(num, "testval3/num");
}
random_yielder(4);
if (!(lock_do_i_hold(testlock))) {
goto fail;
}
random_yielder(4);
lock_release(testlock);
}
/* Check for solutions that don't track ownership properly */
for (i=0; i<NLOCKLOOPS; i++) {
kprintf_t(".");
if (lock_do_i_hold(testlock)) {
goto fail2;
}
}
V(donesem);
return;
fail:
lock_release(testlock);
fail2:
failif(true);
V(donesem);
return;
}
int
locktest(int nargs, char **args)
{
int i, result;
(void)nargs;
(void)args;
int i, result;
kprintf_n("Starting lt1...\n");
for (i=0; i<CREATELOOPS; i++) {
kprintf_t(".");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("lt1: lock_create failed\n");
}
donesem = sem_create("donesem", 0);
if (donesem == NULL) {
panic("lt1: sem_create failed\n");
}
if (i != CREATELOOPS - 1) {
lock_destroy(testlock);
sem_destroy(donesem);
}
}
spinlock_init(&status_lock);
test_status = TEST161_SUCCESS;
inititems();
kprintf("Starting lock test...\n");
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
result = thread_fork("synchtest", NULL, locktestthread, NULL, i);
result = thread_fork("synchtest", NULL, locktestthread,
NULL, i);
if (result) {
panic("lt1: thread_fork failed: %s\n", strerror(result));
panic("locktest: thread_fork failed: %s\n",
strerror(result));
}
}
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
P(donesem);
}
lock_destroy(testlock);
sem_destroy(donesem);
testlock = NULL;
donesem = NULL;
kprintf_t("\n");
success(test_status, SECRET, "lt1");
return 0;
}
int
locktest2(int nargs, char **args) {
(void)nargs;
(void)args;
kprintf_n("Starting lt2...\n");
kprintf_n("(This test panics on success!)\n");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("lt2: lock_create failed\n");
}
secprintf(SECRET, "Should panic...", "lt2");
lock_release(testlock);
/* Should not get here on success. */
success(TEST161_FAIL, SECRET, "lt2");
lock_destroy(testlock);
testlock = NULL;
return 0;
}
int
locktest3(int nargs, char **args) {
(void)nargs;
(void)args;
kprintf_n("Starting lt3...\n");
kprintf_n("(This test panics on success!)\n");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("lt3: lock_create failed\n");
}
secprintf(SECRET, "Should panic...", "lt3");
lock_acquire(testlock);
lock_destroy(testlock);
/* Should not get here on success. */
success(TEST161_FAIL, SECRET, "lt3");
testlock = NULL;
kprintf("Lock test done.\n");
return 0;
}
@@ -345,38 +224,35 @@ static
void
cvtestthread(void *junk, unsigned long num)
{
(void)junk;
int i;
volatile int j;
struct timespec ts1, ts2;
(void)junk;
for (i=0; i<NCVLOOPS; i++) {
kprintf_t(".");
lock_acquire(testlock);
while (testval1 != num) {
testval2 = 0;
random_yielder(4);
gettime(&ts1);
cv_wait(testcv, testlock);
gettime(&ts2);
random_yielder(4);
/* ts2 -= ts1 */
timespec_sub(&ts2, &ts1, &ts2);
/* Require at least 2000 cpu cycles (we're 25mhz) */
if (ts2.tv_sec == 0 && ts2.tv_nsec < 40*2000) {
kprintf_n("cv_wait took only %u ns\n", ts2.tv_nsec);
kprintf_n("That's too fast... you must be busy-looping\n");
failif(true);
kprintf("cv_wait took only %u ns\n",
ts2.tv_nsec);
kprintf("That's too fast... you must be "
"busy-looping\n");
V(donesem);
thread_exit();
}
testval2 = 0xFFFFFFFF;
}
testval2 = num;
kprintf("Thread %lu\n", num);
testval1 = (testval1 + NTHREADS - 1)%NTHREADS;
/*
* loop a little while to make sure we can measure the
@@ -384,13 +260,7 @@ cvtestthread(void *junk, unsigned long num)
*/
for (j=0; j<3000; j++);
random_yielder(4);
cv_broadcast(testcv, testlock);
random_yielder(4);
failif((testval1 != testval2));
kprintf_n("Thread %lu\n", testval2);
testval1 = (testval1 + NTHREADS - 1) % NTHREADS;
lock_release(testlock);
}
V(donesem);
@@ -399,57 +269,30 @@ cvtestthread(void *junk, unsigned long num)
int
cvtest(int nargs, char **args)
{
(void)nargs;
(void)args;
int i, result;
kprintf_n("Starting cvt1...\n");
for (i=0; i<CREATELOOPS; i++) {
kprintf_t(".");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("cvt1: lock_create failed\n");
}
testcv = cv_create("testcv");
if (testcv == NULL) {
panic("cvt1: cv_create failed\n");
}
donesem = sem_create("donesem", 0);
if (donesem == NULL) {
panic("cvt1: sem_create failed\n");
}
if (i != CREATELOOPS - 1) {
lock_destroy(testlock);
cv_destroy(testcv);
sem_destroy(donesem);
}
}
spinlock_init(&status_lock);
test_status = TEST161_SUCCESS;
(void)nargs;
(void)args;
inititems();
kprintf("Starting CV test...\n");
kprintf("Threads should print out in reverse order.\n");
testval1 = NTHREADS-1;
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
result = thread_fork("cvt1", NULL, cvtestthread, NULL, (long unsigned) i);
result = thread_fork("synchtest", NULL, cvtestthread, NULL, i);
if (result) {
panic("cvt1: thread_fork failed: %s\n", strerror(result));
panic("cvtest: thread_fork failed: %s\n",
strerror(result));
}
}
for (i=0; i<NTHREADS; i++) {
kprintf_t(".");
P(donesem);
}
lock_destroy(testlock);
cv_destroy(testcv);
sem_destroy(donesem);
testlock = NULL;
testcv = NULL;
donesem = NULL;
kprintf_t("\n");
success(test_status, SECRET, "cvt1");
kprintf("CV test done\n");
return 0;
}
@@ -475,28 +318,19 @@ static
void
sleepthread(void *junk1, unsigned long junk2)
{
unsigned i, j;
(void)junk1;
(void)junk2;
unsigned i, j;
random_yielder(4);
for (j=0; j<NLOOPS; j++) {
kprintf_t(".");
for (i=0; i<NCVS; i++) {
lock_acquire(testlocks[i]);
random_yielder(4);
V(gatesem);
random_yielder(4);
spinlock_acquire(&status_lock);
testval4++;
spinlock_release(&status_lock);
cv_wait(testcvs[i], testlocks[i]);
random_yielder(4);
lock_release(testlocks[i]);
}
kprintf_n("sleepthread: %u\n", j);
kprintf("sleepthread: %u\n", j);
}
V(exitsem);
}
@@ -505,28 +339,19 @@ static
void
wakethread(void *junk1, unsigned long junk2)
{
unsigned i, j;
(void)junk1;
(void)junk2;
unsigned i, j;
random_yielder(4);
for (j=0; j<NLOOPS; j++) {
kprintf_t(".");
for (i=0; i<NCVS; i++) {
random_yielder(4);
P(gatesem);
random_yielder(4);
lock_acquire(testlocks[i]);
random_yielder(4);
testval4--;
failif((testval4 != 0));
cv_signal(testcvs[i], testlocks[i]);
random_yielder(4);
lock_release(testlocks[i]);
}
kprintf_n("wakethread: %u\n", j);
kprintf("wakethread: %u\n", j);
}
V(exitsem);
}
@@ -534,44 +359,30 @@ wakethread(void *junk1, unsigned long junk2)
int
cvtest2(int nargs, char **args)
{
(void)nargs;
(void)args;
unsigned i;
int result;
kprintf_n("Starting cvt2...\n");
for (i=0; i<CREATELOOPS; i++) {
kprintf_t(".");
gatesem = sem_create("gatesem", 0);
if (gatesem == NULL) {
panic("cvt2: sem_create failed\n");
}
exitsem = sem_create("exitsem", 0);
if (exitsem == NULL) {
panic("cvt2: sem_create failed\n");
}
if (i != CREATELOOPS - 1) {
sem_destroy(gatesem);
sem_destroy(exitsem);
}
}
(void)nargs;
(void)args;
for (i=0; i<NCVS; i++) {
kprintf_t(".");
testlocks[i] = lock_create("cvtest2 lock");
testcvs[i] = cv_create("cvtest2 cv");
}
spinlock_init(&status_lock);
test_status = TEST161_SUCCESS;
gatesem = sem_create("gatesem", 0);
exitsem = sem_create("exitsem", 0);
result = thread_fork("cvt2", NULL, sleepthread, NULL, 0);
kprintf("cvtest2...\n");
result = thread_fork("cvtest2", NULL, sleepthread, NULL, 0);
if (result) {
panic("cvt2: thread_fork failed\n");
panic("cvtest2: thread_fork failed\n");
}
result = thread_fork("cvt2", NULL, wakethread, NULL, 0);
result = thread_fork("cvtest2", NULL, wakethread, NULL, 0);
if (result) {
panic("cvt2: thread_fork failed\n");
panic("cvtest2: thread_fork failed\n");
}
P(exitsem);
P(exitsem);
@@ -579,194 +390,12 @@ cvtest2(int nargs, char **args)
sem_destroy(gatesem);
exitsem = gatesem = NULL;
for (i=0; i<NCVS; i++) {
kprintf_t(".");
lock_destroy(testlocks[i]);
cv_destroy(testcvs[i]);
testlocks[i] = NULL;
testcvs[i] = NULL;
}
kprintf_t("\n");
success(test_status, SECRET, "cvt2");
return 0;
}
int
cvtest3(int nargs, char **args) {
(void)nargs;
(void)args;
kprintf_n("Starting cvt3...\n");
kprintf_n("(This test panics on success!)\n");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("cvt3: lock_create failed\n");
}
testcv = cv_create("testcv");
if (testcv == NULL) {
panic("cvt3: cv_create failed\n");
}
secprintf(SECRET, "Should panic...", "cvt3");
cv_wait(testcv, testlock);
/* Should not get here on success. */
success(TEST161_FAIL, SECRET, "cvt3");
lock_destroy(testlock);
cv_destroy(testcv);
testcv = NULL;
testlock = NULL;
return 0;
}
int
cvtest4(int nargs, char **args) {
(void)nargs;
(void)args;
kprintf_n("Starting cvt4...\n");
kprintf_n("(This test panics on success!)\n");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("cvt4: lock_create failed\n");
}
testcv = cv_create("testcv");
if (testcv == NULL) {
panic("cvt4: cv_create failed\n");
}
secprintf(SECRET, "Should panic...", "cvt4");
cv_broadcast(testcv, testlock);
/* Should not get here on success. */
success(TEST161_FAIL, SECRET, "cvt4");
lock_destroy(testlock);
cv_destroy(testcv);
testcv = NULL;
testlock = NULL;
return 0;
}
static
void
sleeperthread(void *junk1, unsigned long junk2) {
(void)junk1;
(void)junk2;
random_yielder(4);
lock_acquire(testlock);
random_yielder(4);
failif((testval1 != 0));
testval1 = 1;
cv_signal(testcv, testlock);
random_yielder(4);
cv_wait(testcv, testlock);
failif((testval1 != 3));
testval1 = 4;
random_yielder(4);
lock_release(testlock);
random_yielder(4);
V(exitsem);
}
static
void
wakerthread(void *junk1, unsigned long junk2) {
(void)junk1;
(void)junk2;
random_yielder(4);
lock_acquire(testlock2);
failif((testval1 != 2));
testval1 = 3;
random_yielder(4);
cv_signal(testcv, testlock2);
random_yielder(4);
lock_release(testlock2);
random_yielder(4);
V(exitsem);
}
int
cvtest5(int nargs, char **args) {
(void)nargs;
(void)args;
int result;
kprintf_n("Starting cvt5...\n");
testlock = lock_create("testlock");
if (testlock == NULL) {
panic("cvt5: lock_create failed\n");
}
testlock2 = lock_create("testlock2");
if (testlock == NULL) {
panic("cvt5: lock_create failed\n");
}
testcv = cv_create("testcv");
if (testcv == NULL) {
panic("cvt5: cv_create failed\n");
}
exitsem = sem_create("exitsem", 0);
if (exitsem == NULL) {
panic("cvt5: sem_create failed\n");
}
spinlock_init(&status_lock);
test_status = TEST161_SUCCESS;
testval1 = 0;
lock_acquire(testlock);
lock_acquire(testlock2);
result = thread_fork("cvt5", NULL, sleeperthread, NULL, 0);
if (result) {
panic("cvt5: thread_fork failed\n");
}
result = thread_fork("cvt5", NULL, wakerthread, NULL, 0);
if (result) {
panic("cvt5: thread_fork failed\n");
}
random_yielder(4);
cv_wait(testcv, testlock);
failif((testval1 != 1));
testval1 = 2;
random_yielder(4);
lock_release(testlock);
random_yielder(4);
lock_release(testlock2);
P(exitsem);
P(exitsem);
failif((testval1 != 4));
sem_destroy(exitsem);
cv_destroy(testcv);
lock_destroy(testlock2);
lock_destroy(testlock);
success(test_status, SECRET, "cvt5");
exitsem = NULL;
testcv = NULL;
testlock2 = NULL;
testlock = NULL;
testsem2 = NULL;
testsem = NULL;
kprintf("cvtest2 done\n");
return 0;
}

View File

@@ -66,7 +66,10 @@ fakethread_create(const char *name)
}
/* ignore most of the fields, zero everything for tidiness */
bzero(t, sizeof(*t));
strcpy(t->t_name, name);
t->t_name = kstrdup(name);
if (t->t_name == NULL) {
panic("threadlisttest: Out of memory\n");
}
t->t_stack = FAKE_MAGIC;
threadlistnode_init(&t->t_listnode, t);
return t;
@@ -81,6 +84,7 @@ fakethread_destroy(struct thread *t)
{
KASSERT(t->t_stack == FAKE_MAGIC);
threadlistnode_cleanup(&t->t_listnode);
kfree(t->t_name);
kfree(t);
}